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Abstract
We consider claims problems with indivisible goods. Specifically, by applying the recursive procedures proposed by

Giménez-Gomez and Marco-Gil (2014) and Giménez-Gómez and Peris (2014), we ensure the fulfilment of order

preservation and balancedness, considered by many authors as minimal requirements of fairness. Moreover, we

retrieve the discrete constrained equal losses and the discrete constrained equal awards rules (Herrero and Martinez,

2008). By the recursive imposition of a lower bound and an upper bound, we obtain the average between them.
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1. Introduction

When a firm goes bankrupt, and the assets are not enough to satisfy its creditors’ demands,

how should those assets be divided up among the creditors? This important issue of claims prob-

lems acquires a special interest in the current global financial crisis. In this kind of situations the

amount to allocate and the demands of the creditors are perfectly divisible and homogeneous.

However, there are many real-world situations in which both the amount to allocate and the

claims are indivisible and identical units. Thus, every solution will assign an integer of units of

this good to each agent. Consider, for instance, the cases of waiting lists for surgery at hospitals,

airport slots demanded by airlines, and allocations of visas to potential immigrants. The data

of these problems, as well as the allocations, are all integers. Even when the demands can be

satisfied, discreteness may be a problem (see Balinski and Young, 2001).

Situations like these, are studied under the framework of the so-called claims problem, orig-

inated by O’Neill (1982), either for perfectly divisible claims (see Bergantiños et al., 2010;

Giménez-Gómez and Peris, 2014b; Bergantiños and Moreno-Ternero, 2016; among others), or

for the indivisible case.1 Usually, in the case of indivisible claims problems, priority (rationing)

methods are applied (Moulin, 2000; Herrero and Martı́nez, 2008b; and Chen, 2015). Specifi-

cally, in rationing problems when agents have single peaked preferences, Herrero and Martı́nez

(2008b) consider the M-down method which can be interpreted as the discrete version of the

well-known constrained equal awards rule in the divisible case. Nonetheless, applying the M-

down method to the claims problems yields a less desirable rule, and thus the claims problems

ought to be considered in their own right. Recently, other contributions have been developed

in the literature by Fragnelli et al. (2014, 2015) trying to distribute indivisible units by mean of

sequential algorithms.

Additionally, we assume that the society agrees on a list of social constraints; axioms de-

limiting a set of rules that society finds acceptable. The problem is that this set of rules may be

too large. We devise a procedure that takes as given this list of social constraints and deduces a

single-valued rule; for instance, Giménez-Gómez and Marco-Gil (2014) and Giménez-Gómez

and Peris (2014a) analyse its application to the divisible case. Regarding this set of admissible

rules, we define lower and upper bounds on awards by ensuring to each agent the smallest and

the highest quantities they may receive from this set. Note that some actual indivisibility prob-

lems with bounds are present, such as the Spanish Parliament or the United States House of

Representatives, where the seats are allocated to each province or state, respectively. Notwith-

standing, a minimal number of seats is guaranteed to each province.

By applying our lower bound (upper bound) recursively on awards to distribute the endow-

ment, we reach the discrete constrained equal losses (the discrete constrained equal awards)

rule. These results are similar to those obtained by Herrero and Martı́nez (2008a), but our pro-

posal guarantees order preservation and balancedness. Finally, we propose the simultaneous

recursive application of both bounds on awards. That is, (i) each agent receives at least her

lower bound, and (ii) her claim is bounded by her upper bound. This procedure ends up as the

average of both of them.

The paper is organised as follows: Section 2 presents the model. Sections 3 and 4 provide

our approaches and results. Finally, Section 5 concludes. Appendices gather technical proofs.

1See Thomson (2015) for a survey.



2. The model

Given the set of natural numbers N, N denotes the class of non-empty finite subsets of N.

For a fixed set of agents N = {1, ..., n} ∈ N , a discrete claims problem is a pair (E, c) ∈
Z+×Z

N
+ , where Z represents the set of integers, E denotes the endowment and c = (c1, . . . , cn)

is the vector of claims for each agent i ∈ N , such that the aggregate claim is greater than the

endowment, C =
∑

i∈N

ci ≥ E. Without loss of generality we assume claims are increasingly

ordered, that is, for each i < j, ci ≤ cj . The set of discrete claims problems is D. An

allocation x is admissible if it satisfies xi ≥ 0 (non-negativity), xi ≤ ci (claim-boundedness)

and
∑

i∈N

xi = E (efficiency). Let A(E, c) be set of all admissible allocations for the problem

(E, c), then the correspondence of admissible allocations is Z : D ⇒
⋃

(E,c)∈D A(E, c). A rule

ϕ is a single-valued selection from Z. Denote the set of rules by Φ. Each claims problem can

be approached from two (dual) points of view: those of awards and losses, i.e. the part of the

aggregate claims that are not honoured by the endowment (L = C − E); note that it will vary

for each problem (E, c). The dual rule of ϕ (Aumann and Maschler, 1985), ϕd, assigns for

each (E, c) ∈ D and each i ∈ N, ϕd
i (E, c) = ci − ϕi(L, c). Accordingly, a rule is self-dual

(Aumann and Maschler, 1985) if it coincides with its dual.

Among all the rules proposed in the literature, we focus on the discrete constrained equal

awards and the discrete constrained equal losses rule. In doing so, hereinafter, let σ denote

a linear ordering (a complete, transitive and asymmetric binary relation) on the set of agents

N . An agent i has higher priority over another agent j whenever iσj. Ω denotes the set of all

possible linear orderings on N . Q(ϕ;E, c) represents the set of agents such that their assignment

recommended by a rule (the first argument of Q) is not an integer. For any x ∈ R+, ⌊x⌋ denotes

the largest integer number s.t. ⌊x⌋ ≤ x. Herrero and Martı́nez (2008a) propose that the discrete

constrained equal awards rule associated with the ordering σ, DCEAσ, recommends to each

agent the integer part of the assignment given by the CEA rule, and the remaining endowment

is distributed following a priority ordering σ among the agents in Q(CEA;E, c). According to

the priority order, we give one unit to each of the claimants in Q(CEA;E, c) with the highest

priority until what remains of the endowment is distributed.2

Given σ ∈ Ω, for each (E, c) ∈ D and each i ∈ N , the discrete constrained equal awards

rule associated with σ, DCEAσ is: DCEAσ
i (E, c) = ⌊CEAi(E, c)⌋+1 if i is in the list of the

E ′ elements with highest priority in Q(CEA;E, c), where E ′ = E −
∑

i∈N

⌊CEAi(E, c)⌋ > 0;

or ⌊CEAi(E, c)⌋, otherwise.

Similarly, the discrete constrained equal losses rule associated with the ordering σ, DCELσ,

recommends to each agent the integer part of CEL rule,3 and the remaining endowment is dis-

tributed following a priority ordering σ among the agents in Q(CEL;E, c), until what remains

of the endowment is distributed.

Given σ ∈ Ω, for each (E, c) ∈ D and each i ∈ N, the discrete constrained equal losses

2Let D denote the set of perfectly divisible claims problems. The constrained equal awards rule (Maimonides

12th, among others), CEA: for each (E, c) ∈ D and each i ∈ N, CEAi(E, c) ≡ min {ci, µ} , where µ is chosen

so that
∑

i∈N

min {ci, µ} = E.

3The constrained equal losses rule (Aumann and Maschler, 1985), CEL: for each (E, c) ∈ D and each i ∈ N,

CELi(E, c) ≡ max {0, ci − µ} , where µ is chosen so that
∑

i∈N

max {0, ci − µ} = E.



rule associated with σ, DCELσ is: DCELσ
i (E, c) = ⌊CELi(E, c)⌋ + 1 if i is in the list of E ′

elements with highest priority in Q(CEL;E, c), where E ′ = E −
∑

i∈N

⌊CELi(E, c)⌋ > 0; or

⌊CELi(E, c)⌋, otherwise.

3. The single recursive process

It is noteworthy that in many actual rationing situations the admissible allocations are de-

termined by legal requirements or socially accepted axioms. The class of axioms is a set A.

Accordingly, we propose to delimit the sets of admissible allocations in terms of some list of

axioms P . Let Φ[P ] be the set of rules satisfying all axioms in P , Φ[P ] ⊂ Φ ⊂ (RN)D. There-

fore, for each (E, c) ∈ D, each agent should receive at least the smallest amount recommended

to her by all the proposals in Φ[P ] — the P-rights value Pr.

The aggregate guaranteed amount by means of the Pr may not exhaust the endowment, so

a requirement of composition from the profile of these bounds arises in a natural way. In this

sense, we follow Giménez-Gómez and Marco-Gil (2014) in order to distribute the endowment

through the application of this lower bound. Specifically, we define the single recursive process

such that at the first step each agent will receive her Pr of the original problem. At the second

step, the endowment is what remains and the claims are adjusted down by the amounts just

assigned. Then, each agent receives her Pr in this residual problem, and so on.

Definition 1 Given a list of axioms P ∈ 2A, for each (E, c) ∈ D, each i ∈ N and each step

m ∈ N, Pri(E
m, cm) is defined in the following way:

Step 1, (E1, c1) = (E, c) and Pri(E
1, c1) = min

ϕ∈Φ[P ]
{ϕi(E

1, c1)}.

Step m, for m ≥ 2, (Em, cm) ≡ (Em−1 −
∑

i∈N

Pri(E
m−1, cm−1), cm−1 −Pr(Em−1, cm−1)), and

Pri(E
m, cm) = min

ϕ∈Φ[P ]
{ϕi(E

m, cm)} . and so on untill m = t where Et = 0.

Given σ ∈ Ω, the single recursive process defines the mapping Rσ : 2A → Φ and Rσ[P ]i(E, c)

=
t
∑

m=1

Pri(E
m, cm)+1, if i is in the list of the E ′ elements with highest priority, where E ′ =

E −
∑

i∈N

t
∑

m=1

Pri(E
m, cm) > 0; Rσ[P ]i(E, c) =

t
∑

m=1

Pri(E
m, cm), otherwise.

Note that this kind of process has already been used in the context of conflicting claims

problems by Alcalde et al. (2005), Dominguez and Thomson (2006), and Dominguez (2013),

among others. Additionally, the result of this single recursive process depends on P and on

the priority ordering σ. Therefore, it is straightforward to see that this process exhausts the

endowment, since if each agent’s Pr value is not positive, then priority ordering, which is

exogenous, is applied at the end of the process on the set of allocations that satisfy all the

properties in P to distribute the last remaining units in order to reach efficiency.

We consider two axioms that have been used by many authors as a minimal requirement of

fairness (see, for instance, Thomson, 2015): order preservation and balancedness. The former

axiom requires respecting the ordering of the claims, i.e. if agent i′s claim is at least as large

as agent j′s claim, she should receive and lose at least as much as agent j does, respectively.

Regarding balancedness, note that one of the most traditional fairness properties is to treat

identical agents identically. It simply means that agents with identical claims should receive



the same amount. This requirement cannot be unconditionally met in the indivisibilities case,

hence we relax this property by simply asking identical agents to be “almost” treated equally in

terms of their awards. More precisely, equal agents get amounts that can differ only in one unit,

which represents the size of the indivisibility.

Order preservation, OP : For each (E, c) ∈ D and each pair i, j ∈ N , if ci > cj, then

ϕi(E, c) ≥ ϕj(E, c) and ci − ϕi(E, c) ≥ cj − ϕj(E, c).

Balancedness, BAL: For each (E, c) ∈ D and each pair i, j ∈ N , if ci = cj, then | ϕi(E, c)−
ϕj(E, c) |≤ 1.

The non-fulfilment of these axioms allows that, in a disaster situation, people who need

more assistance may receive less than those who need less; or if an airport has some slots

available and there are two identical airline companies that are demanding the same number

of airport slots, then one company could obtain all of the slots. In this sense, the following

example shows that in the M-down method, depending on which priority order we apply, order

preservation may not fulfil.

Example 1 Consider three patients that are waiting for a corneal transplant. The first two

patients need one cornea, whereas the third one needs two. There are two corneas available.

Hence, their associated claims problem is (E, c) = (2, (1, 1, 2)). In this case, CEA(E, c) =
(2
3
, 2
3
, 2
3
), and CEL(E, c) = (1

3
, 1
3
, 11

3
). Then, ⌊CEA(E, c)⌋ = (0, 0, 0), and ⌊CEL(E, c)⌋ =

(0, 0, 1). Consider that the priority order σ ∈ Ω, that is determined by the time that each patient

has been waiting the transplant, is 1σ2σ3. Hence, by the M-down method DCEAσ(E, c) =
(1, 1, 0) and DCELσ(E, c) = (1, 0, 1), contradicting OP.

Thereafter, requiring the fulfilment of the accepted axioms P appears in a natural way. Par-

ticularly, given an ordering σ, the discrete constrained equal awards and the discrete constrained

equal loses rules with principles, DCEAσ[P ] and DCELσ[P ], respectively, by means of the

order σ selects an allocation that satisfyes P . Formally,

Definition 2 Given a list of axioms P ∈ 2A and σ ∈ Ω, for each (E, c) ∈ D and each i ∈ N ,

the discrete constrained equal awards rule with principles associated to σ, DCEAσ[P ], is:

DCEAσ
i [P ](E, c) = ⌊CEAi(E, c)⌋ + 1 if i is in the list of the E ′ elements in Q(CEA;E, c)

with highest priority in the order σ; or ⌊CEAi(E, c)⌋, otherwise, whenever DCEAσ[P ](E, c)
satisfies all principles in P . If not, we repeat the same process with the following priority order

in σ until DCEAσ[P ](E, c) satisfies all principles in P . 4

Definition 3 Given a list of axioms P ∈ 2A and σ ∈ Ω, for each (E, c) ∈ D and each i ∈
N , the discrete constrained equal loses rule with principles associated to σ, DCELσ[P ], is:

DCELσ
i [P ](E, c) = ⌊CELi(E, c)⌋ + 1 if i is in the list of the E ′ elements in Q(CEL;E, c)

with highest priority in the order σ; or ⌊CELi(E, c)⌋, otherwise, whenever DCELσ[P ](E, c)
satisfies all principles in P . If not, we repeat the same process with the following priority order

in σ until DCELσ[P ](E, c) satisfies all principles in P . 5

4Recall that E′ = E −
∑

i∈N

⌊CEAi(E, c)⌋ > 0.

5Recall that E′ = E −
∑

i∈N

⌊CELi(E, c)⌋ > 0.



Hence, for instance, the DCELσ[P ] works as follows. Firstly, recommends to each agent

the integer part of the assignment given by the CEL rule. Secondly, the remaining endowment

is distributed among the agents in Q(CEL;E, c) according to σ, if the obtained allocation

satisfies all principles in P , this is the DCELσ[P ]. Otherwise, we distribute again the remaining

endowment with the following priority order in σ and so on until we get an allocation satisfying

all the required principles in P .

Example 2 (continues from Example 1) Consider P = {OP,BAL}. In this case,

⌊CEA(E, c)⌋ = (0, 0, 0). Consider the priority order 1σ2σ3. We have two remaining units to

distribute, according to the priority order the distribution should be (1, 1, 0) but this allocation

is not admissible since fails OP. Then, we apply the following priority order and the allocation

we get is (1, 0, 1), since this satisfies OP and BAL we have DCEAσ[P ](E, c) = (1, 0, 1). Simi-

larly, the ⌊CEL(E, c)⌋ = (0, 0, 1) and we have one remaining unit to distribute. According to

the priority order the distribution should be (1, 0, 1) and this satisfies all principles P , therefore

this is the DCELσ[P ](E, c).

The next result states, as Example 3 shows, that under OP and BAL, the DCELσ[P ] is

obtained by Rσ[P ].

Theorem 1 Given σ ∈ Ω and P = {OP,BAL}, for each (E, c) ∈ D, Rσ[P ](E, c) =
DCELσ[P ](E, c).

Proof. See Appendix 1.

Note that this result states that the recursive application of a lower bound that may be easily

accepted ends up to a distribution of the endowment that favours highest claimants.

Example 3 Consider (E, c) = (100, (20, 30, 60)), P = {OP,BAL} and the priority order-

ing σ ∈ Ω is 2σ3σ1. At step m = 1, CEA(E1, c1) = (20, 30, 50) = DCEAσ[P ](E1, c1) and

CEL(E1, c1) = (162
3
, 262

3
, 562

3
). Then ⌊CEL(E1, c1)⌋ = (16, 26, 56), so there are two remain-

ing units to distribute among the three agents, giving three plausible allocations (17, 27, 56),
(17, 26, 57) and (16, 27, 57). By P , the only admissible one is (17, 27, 56). Thus,

DCELσ[P ](E1, c1) = (17, 27, 56).
By Giménez-Gómez and Marco-Gil (2014), when considering OP and BAL, the CEL and

CEA rules are the Pr for agents 1 and n, respectively. For agents in between we must look

for the smallest allocation satisfying both properties. Therefore, in our case, the admissible

allocation that provides the smallest amount to agent 2 is (20, 25, 55). Hence, Pr(E1, c1) =
(17, 25, 50).

At step m = 2, (E2, c2) = (8, (3, 5, 10)). So that, CEA(E2, c2) = (22
3
, 22

3
, 22

3
), then

⌊CEA(E2, c2)⌋ = (2, 2, 2), but there are two more units to distribute and this gives three

possible allocations (2, 3, 3), (3, 2, 3), and (3, 3, 2), by P the only admissible one is (2, 3, 3),
thus DCEAσ[P ](E2, c2) = (2, 3, 3).

The CEL(E2, c2) = (0, 11
2
, 61

2
) and ⌊CEA(E2, c2)⌋ = (0, 1, 6), there is one more unit to

distribute among agents 2 and 3. This gives two possibilities (0, 2, 6) and (0, 1, 7), by P the

only admissible one is (0, 2, 6). Thus, DCELσ[P ](E2, c2) = (0, 2, 6). Furthermore, note that

there is no other admissible allocation that recommends a smaller amount to agent 2. Hence

Pr(E2, c2) = (0, 2, 3).



At step m = 3, (E3, c3) = (3, (3, 3, 7)). So that, CEA(E3, c3)=(1, 1, 1) and CEL(E3, c3)
= (0, 0, 3). So, DCEAσ[P ](E3, c3) = (1, 1, 1), DCELσ[P ](E3, c3) = (0, 0, 3), and Pr(E3, c3)
= (0, 0, 1). From m = 3 on, agents 1 and 2 will not receive any awards and all the remaining

units will go for the third agent. Therefore, Rσ[P ](E, c) = (17, 27, 56) = DCELσ[P ](E, c).

Since DCEL and DCEA are dual to each other (Herrero and Martı́nez, 2004), the next

corollary is straightforward.

Corollary 1 Given σ ∈ Ω and P = {OP,BAL}, for each (E, c) ∈ D, c − Rσ[P ](L, c) =
DCEAσ[P ](E, c).

4. The double recursive process

Next, our notion of an admissible rule is given by both P and an admissible zone delimited

by two dual reference rules F [P ] and F [P ]d. An admissible rule ϕ ∈ Φ[P ] is PF-admissible

if min{F [P ]i(E, c), F [P ]di (E, c)} ≤ ϕi (E, c) ≤ max{F [P ]i(E, c), F [P ]di (E, c)}. Let Φ[P ;F ]
denote the set of PF-admissible rules.

Note that this framework fits with conflict situations, such as divorce, where a neutral third

agent (the mediator) decides the allocation that should be applied in accordance with some

legitimate axioms (the law) and two prominent points of view. Moreover, since in claims prob-

lems we have two points of view (those of awards and losses), the two dual reference rules

arise naturally.6 Furthermore, since since F and F d satisfy P , then P will be a set of self-dual

axioms.

The idea of ensuring to each agent her Pr value may be understood as giving her the part of

her claims that is not disputed. It is also commonly assumed that the part of the claims that is

not feasible should not be considered.7 Thus, we truncate the claims by the upper bound given

by each agent’s P-utopia value Pu. Therefore, following Giménez-Gómez and Peris (2014a),

we propose the double recursive process in which, at any step, each agent receives her Pr value

and, at the same time, her claim is truncated by her Pu value.

Definition 4 Given a list of self-dual axioms P ∈ 2A, for each (E, c) ∈ D, each i ∈ N and

each step m ∈ N, Pri(E
m, cm) and Pui(E

m, cm) are defined in the following way:

Step 1, for m = 1,
(E1, c1) = (E, c), P ri(E

1, c1) = min
ϕ∈Φ[P ;F ]

{ϕi(E
1, c1)}, and

Pui(E
1, c1) = max

ϕ∈Φ[P ;F ]
{ϕi(E

1, c1)} .

Step m, for m ≥ 2,
Em = Em−1 −

∑

i∈N

Pri(E
m−1, cm−1), cmi = Pui(E

m−1, cm−1) −Pri(E
m−1, cm−1),

P ri(E
m, cm) = min

ϕ∈Φ[P ;F ]
{ϕi(E

m, cm)} and

Pui(E
m, cm) = max

ϕ∈Φ[P ;F ]
{ϕi(E

m, cm)} .

Given σ ∈ Ω, the double recursive process defines the mapping DRσ : 2A → Φ and

DRσ[P ;F ]i(E, c) =
∞
∑

m=1

Pri(E
m, cm)+1, if i is in the list of the E ′ elements with highest

6Giménez-Gómez and Peris (2014a) discuss mediation situations.
7See, for instance, Aumann and Maschler (1985).



priority, where E ′ = E −
∑

i∈N

∞
∑

m=1

Pri(E
m, cm) > 0; DRσ[P ;F ]i(E, c) =

∞
∑

m=1

Pri(E
m, cm),

otherwise.

This process always satisfies efficiency due to the application of σ, as in the case of the

recursive process. Furthermore, DRσ ends at the midpoint of the allocations provided by the

P -rights and the P -utopia (similarly, at the average of F and F d).

Theorem 2 Given σ ∈ Ω, and P ∈ 2A, for each (E, c) ∈ D and each i ∈ N ,

DRσ[P ;F ]i(E, c) = ⌊Pri(E,c)+Pui(E,c)
2

⌋+1 = ⌊
F [P ]i(E,c)+F [P ]d

i
(E,c)

2
⌋+1, if i is in the list of E ′ el-

ements with highest priority in Q(Pr(E,c)+Pu(E,c)
2

;E, c), where E ′ = E −
∑

i∈N

⌊Pri(E,c)+Pui(E,c)
2

⌋ > 0 or ⌊Pri(E,c)+Pui(E,c)
2

⌋ = ⌊
F [P ]i(E,c)+F [P ]d

i
(E,c)

2
⌋, otherwise.

Proof. See Appendix 2.

Example 4 Consider (E, c) = (100, (20, 30, 60)), P = {OP,BAL}, the priority ordering

σ ∈ Ω is 2σ3σ1, and F [P ](E, c) = DCEAσ[P ], F [P ]d(E, c) = DCELσ[P ]. At step

m = 1, from Example 3, DCEAσ[P ](E1, c1) = (20, 30, 50) and DCELσ[P ](E1, c1) =
(17, 27, 56). Hence, Pr(E1, c1) = (17, 27, 50) and Pu(E1, c1) = (20, 30, 56). At step m = 2,

(E2, c2)=(6, (3, 3, 6)). So that, CEA(E2, c2) = (2, 2, 2) and CEL(E2, c2) = (1, 1, 4). Then,

DCEAσ[P ](E2, c2) = (2, 2, 2) and DCELσ[P ](E2, c2) = (1, 1, 4). Hence, Pr(E2, c2) =
(1, 1, 2), and Pu(E2, c2) = (2, 2, 4). At step m = 3,

(E3, c3)=(2, (1, 1, 2)). So that, CEA(E3, c3) = (2
3
, 2
3
, 2
3
) and CEL(E3, c3) = (1

3
, 1
3
, 11

3
). Then,

DCEAσ[P ](E3, c3) = (0, 1, 1) and DCELσ[P ](E3, c3) = (0, 1, 1). 8 So, Pr(E3, c3) =
Pu(E3, c3) = (0, 1, 1). Therefore, DRσ[P ;F ](E, c) = (18, 29, 53).

Additionally,
DCEAσ [P ](E,c)+DCELσ [P ](E,c)

2
= Pr(E,c)+Pu(E,c)

2
= (181

2
, 281

2
, 53), so

⌊DCEAσ [P ](E,c)+DCELσ [P ](E,c)
2

⌋ = (18, 28, 53) and the remaining unit corresponds to player 2,

according to σ, i.e., (18, 29, 53), which coincides with DRσ[P ;F ].

5. Final remarks

The current approach has proposed two procedures for allocating a discrete endowment.

Specifically, besides the usual priority ordering σ, a list of axioms P has been taken into account.

In this manner, it is ensured that in situations where the claimants are prioritised following the

arrival ordering, if at any time a change in the claims occurs, P determines the admissible

allocations. For instance, consider medical assistance where P = {OP,BAL}. If, suddenly,

there is a natural disaster causing the biggest demand of medical assistance by a country that

has suffered it last, then despite being the last to demand medical assistance, by the requirement

of P this country will receive at least as much as the previous countries.

8DCEAσ(E3, c3, P ) may recommend (1, 1, 0), (1, 0, 1) and (0, 1, 1), but only (1, 0, 1) and (0, 1, 1) are PF-

admissible. Then, by σ, DCEAσ[P ](E3, c3) = (0, 1, 1). Moreover, DCELσ(E3, c3, P ) may recommend

(0, 1, 1), (1, 0, 1) and (0, 0, 2), but only (1, 0, 1) and (0, 1, 1) are PF-admissible. Then, by σ, DCELσ[P ](E3, c3)
= (0, 1, 1).



Appendix 1 Proof of Theorem 1

We assume throughout Appendix 1 that P = {OP,BAL}. The proof is based on five

lemmas, two remarks and one fact.

Remark 1 Given P , for each (E, c) ∈ D and each i, j ∈ N , if cmi ≤ cmj , then cm+1
i ≤ cm+1

j .

Proof.

Let (E, c) ∈ D, i, j ∈ N such that cmi ≤ cmj and ϕ∗, ϕ′ belonging to Φ[P ]. By OP , for each

ϕ ∈ Φ[P ], cmi − ϕi(E
m, cm) ≤ cmj − ϕj(E

m, cm) so that,

(a) If Prmi (E, c) = ϕ∗
i (E

m, cm) and Prmj (E, c) = ϕ∗
j(E

m, cm), by OP , cmi −

Prmi (E
m, cm) ≤ cmj − Prmj (E

m, cm). Therefore, cm+1
i ≤ cm+1

j .
(b) If Prmi (E, c) = ϕ∗

i (E
m, cm) and Prmj (E, c) = ϕ′

j(E
m, cm), by construction,

ϕ′
j(E

m, cm) ≤ ϕ∗
j(E

m, cm), so that, cmi −ϕ∗
i (E

m, cm)≤ cmj −ϕ∗
j(E

m, cm)≤ cmj −ϕ′
j(E

m, cm).

Therefore, cm+1
i ≤ cm+1

j .

�

Fact 1 For each (E, c) ∈ D and each i ∈ N , taking into the account that the loss imposed

on agent i by CEL is CELi(E, c) = ci − γi, where γi = min {ci, αi} and αi = (L −
∑

j<i

γj)/ (n− i+ 1); and, Lm =
∑

i∈N

(

ci −
m
∑

k=1

Pri(E
k, ck)

)

−

(

E −
∑

i∈N

m
∑

k=1

Pri(E
k, ck)

)

=

C − E = L, we obtain that:

(a) If γi = ci, then for each j < i, γj = cj.

(b) If γi = αi, then αi = µ, and for each j > i, αj = αi. Therefore, γi = µ.

(c) At each m ∈ N and for each i ∈ N , αm
i only depends on the initial problem, (E, c), and on

agent j′s claim, for each j < i.9

Remark 2 Given σ ∈ Ω and P , for each (E, c) ∈ D and each i ∈ N ,

DCELσ[P ]i(E, c) = ci − min {ci, µ̄} , where µ̄ = µ̃ − 1, if i is one of the E ′ elements

with highest priority ordering in Q(CEL;E, c); or µ̄ = µ̃, otherwise; and µ̃ = µ, if µ ∈ Z; or

µ̃ = ⌊µ⌋ + 1, if µ /∈ Z. If ci −min {ci, µ̄} satisfies all axioms in P . If not, we repeat the same

process with the following priority ordering in σ until all axioms in P are satisfied.

Proof. For each i ∈ N , by definition ⌊CELi(E, c)⌋ = ⌊ci −min {ci, µ}⌋. We distinguish two

cases:

Case 1: min {ci, µ} = ci. Since µ̃ ≥ µ then, ⌊CELi(E, c)⌋ = ⌊ci− min {ci, µ}⌋ = ci −
min {ci, µ̃} = 0.

Case 2: min {ci, µ} = µ. We have two possibilities:

2.1 If µ ∈ Z, then µ̃ = µ ∈ Z and ⌊CELi(E, c)⌋ = ⌊ci −min {ci, µ}⌋ = ⌊ci − µ⌋ = ci − µ =
ci − µ̃ = ci −min {ci, µ̃}.

2.2 If µ /∈ Z, then µ̃ = ⌊µ⌋+ 1 > µ and ⌊CELi(E, c)⌋ = ⌊ci −min {ci, µ}⌋ = ⌊ci − µ⌋. Since

µ /∈ Z we have ⌊µ⌋ < µ < ⌊µ⌋+ 1 and µ = ⌊µ⌋+ ξ where ξ ∈ (0, 1). Thus, ci − (⌊µ⌋+ 1) <
ci−µ < ci−⌊µ⌋ and ⌊ci−µ⌋ = ⌊ci− (⌊µ⌋+ ξ)⌋ = ci− (⌊µ⌋+1) = ci− µ̃. Moreover, ci > µ

9αm

i
denotes the α of agent i at step m.



and µ /∈ Z so, we have ci ≥ ⌊µ⌋ + 1 = µ̃. Thus, ci − (⌊µ⌋ + 1) = ci − µ̃ = ci −min {ci, µ̃}.

Therefore, ⌊CELi(E, c)⌋ = ci −min{ci, µ̃}. Hence, DCELσ[P ]i(E, c) = ci −min {ci, µ̄}.

�

Lemma 1 Given σ ∈ Ω and P , for each (E, c) ∈ D, each i ∈ N
and each m ∈ N, µ̄m+1 = µ̄m where µ̄m solves
∑

i∈N

⌊CELi(E
m, cm)⌋ = Em and µ̄m+1 solves

∑

i∈N

⌊CELi(E
m+1, cm+1)⌋ = Em+1.

Proof. Let agent i ∈ N be the first agent who receives a positive amount at step m ∈ N ac-

cording to the DCELσ rule, i.e. (i) DCELσ
i (E

m, cm) > 0 and (ii) for each j ∈ N : j < i,
DCELσ

j (E
m, cm) = 0. By (i) and Fact 1, cmi > µ̄m = αm

i . Given (ii) and Definition 1 at the

m-th step, cm+1
j = cmj . By Fact 1(c), αm+1

i = αm
i = µ̄m < cmi . Furthermore, cm+1

i = cmi −

min
ϕ∈Φ[P ]

{ϕi(E
m, cm)} ≥ cmi −DCEL

σ
i(E

m, cm) = cmi −(cmi − µ̄m) = µ̄m = αm+1
i . Therefore, by

Fact 1, γm+1
i = αm+1

i = µ̄m+1.

From now on, µ and µ̄ denote µm and µ̄m, respectively, for each m ∈ N.

Lemma 2 Given σ ∈ Ω and P , for each (E, c) ∈ D if there is m ∈ N such that Pri(E
m, cm) =

DCELσ[P ]i(E
m, cm). Then, for each h ∈ N, Pri(E

m+h, cm+h) = 0.

Proof. For each i ∈ N , we show that if Pri(E
m, cm) = DCELσ[P ]i(E

m, cm) then

Pri(E
m+1, cm+1) = DCELσ[P ]i(E

m+1, cm+1) = 0. Let (E, c) ∈ D and m ∈ N, be such that

Pri(E
m, cm) = DCELσ[P ]i(E

m, cm) = cmi − min {cmi , µ̄}. Then, ci
m+1 = ci

m−
DCELσ[P ]i(E

m, cm) = ci
m − (cmi − min {cmi , µ̄}) = min {cmi , µ̄}. Thus,

DCELσ[P ]i(E
m+1, cm+1) = cm+1

i − min
{

cm+1
i , µ̄

}

= 0. Since for each (E, c) ∈ D and each

i ∈ N, the loss imposed on agent i by CEL is CELi(E, c) = ci − γi, where γi = min {ci, αi}
and αi = (L −

∑

j<i

γj)/ (n− i+ 1) if DCELσ[P ]i(E
m+1, cm+1) = 0 then, for each h ∈ N,

Pri(E
m+1, cm+1) = DCELσ[P ]i(E

m+h, cm+h) = 0.

�

Lemma 3 Given σ ∈ Ω and P , for each (E, c) ∈ D and each i ∈ N , if for each m ∈ N,

Pri(E
m, cm) = ϕi(E

m, cm) 6= DCELσ[P ]i(E, c),
∞
∑

k=1

Pri(E
k, ck) ≤ DCELσ[P ]i(E, c).

Proof. Suppose that for each m ∈ N and each i ∈ N , Pri(E
m, cm) = ϕi(E

m, cm) 6=
DCELσ[P ]i(E, c). By Remark 2, for each m ∈ N, DCELσ[P ]i(E

m, cm) = cmi − min{cmi , µ̄},

Pri(E
m, cm) ≤

DCELσ[P ]i(E
m, cm) = ⌊cmi −µ⌋ = cmi − µ̄ = ci−

m−1
∑

k=1

Pri(E
k, ck)− µ̄. Thus, Pri(E

m, cm)+

m−1
∑

k=1

Pri(E
k, ck) ≤ ci − µ̄ = DCELσ[P ]i(E, c), that is

m
∑

k=1

Pri(E
k, ck) ≤ DCELσ[P ]i(E, c).

Therefore, lim
m→∞

m
∑

k=1

Pri(E
k, ck) ≤ DCELσ[P ]i(E, c).

�

Lemma 4 Given σ ∈ Ω and P , for each (E, c) ∈ D, and each i ∈ N , if there is m∗ ∈
N, m∗ > 1, such that Pri(E

m∗

, cm
∗

) = DCELσ[P ]i(E
m∗

, cm
∗

) and Pri(E
m∗−1, cm

∗−1) =



ϕi(E
m∗−1, cm

∗−1) 6=

DCELσ[P ]i(E
m∗−1, cm

∗−1), then
m∗

∑

k=1

Pri(E
k, ck) = DCELσ[P ]i(E, c).

Proof. Let m∗ ∈ N, m∗ > 1 be such that, for each i ∈ N , Pri(E
m∗

, cm
∗

) =
DCELσ[P ]i(E

m∗

, cm
∗

) and Pri(E
m∗−1, cm

∗−1) = ϕi(E
m∗−1, cm

∗−1) 6=
DCELσ[P ]i(E

m∗−1, cm
∗−1). Since, ϕi(E

m∗−1, cm
∗−1) < DCELσ[P ]i(E

m∗−1, cm
∗−1),

DCELσ[P ]i(E
m∗−1, cm

∗−1, ) > 0. By Lemma 2, DCELσ[P ]i(E
m∗

, cm
∗

) = cm
∗

i −min{cm
∗

i , µ̄}.

Since, DCELσ[P ]i(E
m∗−1, cm

∗−1) > 0, then cm
∗−1

i > µ̄. By Lemma 1, cm
∗

i ≥ µ̄. Then, at

step m∗, agent i has received
m∗

∑

k=1

Pri(E
k, ck) =

m∗−1
∑

k=1

Pri(E
k, ck) +DCELσ[P ]i(E

m∗

, cm
∗

) =

m∗−1
∑

k=1

Pri(E
k, ck) + (cm

∗

i − min
{

cm
∗

i , µ̄
}

) =
m∗−1
∑

k=1

Pri(E
k, ck) + ci−

m∗−1
∑

k=1

Pri(E
k, ck)−min

{

cm
∗

i , µ̄
}

= ci −min
{

cm
∗

i , µ̄
}

= ci − µ̄ = DCELσ[P ]i(E, c).

�

Lemma 5 Given σ ∈ Ω and P , for each (E, c) ∈ D, Pr1(E, c) = DCELσ[P ]1(E, c) and

Prn(E, c) = DCEAσ[P ]n(E, c).

Proof. We show that Pr1(E, c) = DCELσ[P ]1(E, c). Consider the two following cases:

• DCELσ[P ]1 (E, c) = 0. By non-negativity, Pr1(E, c) = DCELσ[P ]1(E, c).
• DCELσ[P ]1 (E, c) > 0. By the DCELσ[P ] rule definition and OP , c1−
DCELσ[P ]1 (E, c) ≤ cj − DCELσ[P ]j (E, c) for each j 6= 1. Let us suppose that there is

ϕ ∈ Φ[P ] such that ϕ1 (E, c) < DCELσ[P ]1 (E, c). By efficiency for some j 6= 1 ϕj (E, c) >
DCELσ[P ]j (E, c). Then, c1−ϕ1 (E, c) > cj−ϕj (E, c) , contradicting OP . Hence, Pr1(E, c)
= DCELσ[P ]1(E, c). Similarly, Prn(E, c) =DCEAσ[P ]n(E, c).

Proof of Theorem 1.

Given σ ∈ Ω and P , for each (E, c) ∈ D, let S = {r ∈ N | sr(E
m, cm) = CELr(E

m, cm)
at some step m ∈ N} and T = N \ S. By Lemma 5, Pr1(E, c) = DCELσ[P ]1(E, c).

Furthermore, by Lemmas 2 and 4, for each agent r ∈ S, we have that
∞
∑

k=1

Prr(E
k, ck) =

DCELσ[P ]r(E, c). Moreover, for each agent l ∈ T , by Lemma 3,
∞
∑

k=1

Prl(E
k, ck) ≤

DCELσ[P ]l(E, c).
Then, since RDσ[P ](E, c) exhausts the endowment Rσ[P ](E, c) = DCELσ[P ](E, c).

�

Appendix 2 Proof of Theorem 2

The proof is based two lemmas. As mentioned, since F and F d should fulfil P , the set of

PF-admissible rules is characterised by a set of self-dual axioms.

Lemma 6 For each P ∈ 2A, (E, c) ∈ D, and m ∈ N,m > 1,
∑

i∈N

[Pri(E
m, cm)+Pui(E

m, cm)]

= Cm.



Proof.

Let m ∈ N,m > 1. Note that, for each P ∈ 2A, (E, c) ∈ D, P r(E, c) = c − Pu(L, c).

Then,
∑

i∈N

[

Pui(E
m,cm)
2

+Pri(E
m,cm)
2

]

= Em.

Finally, Em = Em−1 −
∑

i∈N

Pri(E
m−1, cm−1) =

∑

i∈N

[

Pui(E
m−1,cm−1)
2

+ Pri(E
m−1,cm−1)
2

]

−
∑

i∈N

Pri(E
m−1, cm−1) =

∑

i∈N

[

Pui(E
m−1,cm−1)−Pri(E

m−1,cm−1)
2

]

= Cm/2, by the definition of the

double recursive process.

Lemma 7 For each P ∈ 2A, (E, c) ∈ D and each i ∈ N such that m ∈ N,m > 1,cmi =
Pui(E

m, cm) + Pri(E
m, cm).

Proof. Let m ∈ N, m > 1. Note that, for each P ∈ 2A, (E, c) ∈ D, Em = Lm = Cm/2. We

know that Lm = Cm−Em. By Lemma 6, Em = Cm/2. Therefore, Lm = Cm−Cm/2 = Cm/2.
For each i ∈ N , Pri(E

m, cm) = Pri(L
m, cm). By duality,

Pui(E
m, cm) = cmi −Pri(L

m, cm) = cmi −Pri(E
m, cm), then, cmi = Pui(E

m, cm)+Pri(E
m, cm).

�

Proof of Theorem 2.

For each m ∈ N and each i ∈ N , we have two possibilities,

DRσ[P ;F ]i (E, c) = ⌊Pri(E, c) +
∞
∑

m=2

Pri(E
m, cm)⌋+ 1,

if i is in the list of E ′ elements with highest priority ordering in Q

(

Pr(E,c)+Pu(E,c)
2

;E, c

)

, where

E ′ = E −
∑

i∈N

Pri(E,c)+Pui(E,c)
2

> 0; otherwise,

DRσ[P ;F ]i (E, c) = ⌊Pri(E, c) +
∞
∑

m=2

Pri(E
m, cm)⌋.

By the definition of the double recursive discrete process,
∞
∑

m=2

cmi =
∞
∑

m=2

[Pui(E
m−1, cm−1)− Pri(E

m−1, cm−1)] = Pui(E, c) +
∞
∑

m=2

Pui(E
m, cm) −

Pri(E, c)−
∞
∑

m=2

Pri(E
m, cm).

By Lemma 7,
∞
∑

m=2

cmi =
∞
∑

m=2

[

Pui(E
m, cm) +Pri(E

m, cm)

]

. So, Pui(E, c)+
∞
∑

m=2

Pui(E
m, cm)−

Pri(E, c)−
∞
∑

m=2

Pri(E
m, cm) =

∞
∑

m=2

[Pui(E
m, cm) + Pri(E

m, cm)]. Thus,
∞
∑

m=2

Pri(E
m, cm) =

(

Pui(E, c)− Pri(E, c)

)

/2.

Therefore, DRσ[P ;F ]i (E, c) = ⌊Pri(E,c)+Pui(E,c)
2

⌋ + 1 = ⌊
F [P ]i(E,c)+F [P ]d

i
(E,c)

2
⌋ + 1, if i is in

the list of E ′ elements with highest priority ordering in Q(Pr(E,c)+Pu(E,c)
2

;E, c), where E ′ =

E −
∑

i∈N

Pri(E,c)+Pui(E,c)
2

> 0; otherwise,



DRσ[P ;F ]i (E, c) = ⌊
Pri(E, c) + Pui(E, c)

2
⌋.

Consequently, since ⌊
F [P ]i(E,c)+F [P ]d

i
(E,c)

2
⌋ = ⌊Pri(E,c)+Pui(E,c)

2
⌋, ⌊

F [P ]i(E,c)+F [P ]d
i
(E,c)

2
⌋

= DRσ[P ;F ]i (E, c) .
�
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