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Abstract
In this paper, we consider efficient estimation of coefficients of interest in seemingly unrelated regressions (SUR)

models. Using the GMM interpretation of the usual OLS and GLS/FGLS estimation of regression coefficients in

SUR models, we derive the necessary and sufficient condition for the equal asymptotic efficiency of the OLS and

FGLS estimators of a subset of regression coefficients. As a result, our paper extends the current SUR literature on

the numerical equality of the OLS and GLS/FGLS estimators of the whole coefficient vector (see for example,

Dwivedi and Srivastava, 1978) to the asymptotic equivalence of the OLS and GLS/FGLS estimators of a subset of

the coefficient vector.
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1.  Introduction 

 Since Zellner’s (1962) seminal paper introducing the seemingly unrelated regressions 

(SUR) model, SUR models have found a wide range of applications.  For examples, SUR models 

have been applied to consumer demands (e.g. Bewley (1986)), regional economics (e.g. LeGallo 

and Chasco (2008)), public economics (e.g. Gebremariam, et al. (2012)), urban economics (e.g. 

Baltagi and Bresson (2011)), finance (e.g. Hodgson, et al. (2002)) and international trade (e.g. 

Moon and Perron (2004)).  The basic SUR model has been extended to cases with 

heteroscedasticity and serial correlation in the error terms (e.g. Creel and Farell (1996)).  It has 

also been applied to panel data models with individual effects (e.g. Baltagi (1980)).  SUR models 

have been further applied to nonstationary VAR models for testing panel unit roots and 

cointegration with cross-sectional correlations; see for examples, Moon (1999), Chang (2004), 

Moon and Perron (2004) and Mark, et al. (2005).  Lastly, the newest research development in 

SUR models is concerned with applications to cross-sectional or panel datasets that have both 

temporal and spatial correlations; see for examples, Anselin (1988), Lundberg (2006), Zhou and 

Kockelman (2009), Baltagi and Pirotte (2011) and Gebremariam, et al. (2012).  For more 

complete references of the recent SUR literature, interested readers are further referred to two 

excellent surveys by Fiebig (2001) and Moon and Perron (2006).   

It is also well-known in the SUR literature that the generalized least squares (GLS) or 

feasible GLS (FGLS) estimation applied to the whole system of SUR is asymptotically more 

efficient than the equation-by-equation ordinary least squares (OLS) estimation; see for 

examples Zellner (1962) and Wooldridge (2010, Chapter 7).  However, Zellner (1962, p. 351) 

shows that when the covariance matrix is diagonal or each equation in the system of SUR 

includes the same explanatory variables, GLS/FGLS and OLS are numerically identical.  

Motivated by Zellner’s sufficient conditions and using the optimality condition for the OLS 

estimator in general linear models (see for examples, Zyskind (1967), Kruskal (1968), Rao 

(1973) and Gourieroux and Monfort (1980)), several subsequent papers derive different (but 

equivalent) forms of necessary and sufficient conditions for the numerical equality of OLS and 

GLS/FGLS estimators of SUR models; see for examples, Dwivedi and Srivastava (1978), 

Gourieroux and Monfort (1980), Baltagi (1988), Baksalary and Trenkler (1989), and an excellent 

monograph on SUR models by Srivastava and Giles (1987).  Revanker (1974) and Schmidt 

(1978) show that for the estimation of the regression coefficients of the overidentified equations, 

it is numerically identical whether GLS/FGLS estimation is applied to the whole system of SUR 

or just to the sub-system of overidentified equations.
1
  Gourieroux and Monfort (1980) also 

establishes the necessary and sufficient condition for the numerical equivalence of OLS and GLS 

estimators of a subset of regression coefficients of SUR models. 

 Using the GMM interpretation of OLS and GLS/FGLS estimators of SUR models, Qian 

(2008) derives the necessary and sufficient condition for the equal asymptotic efficiency of OLS 

and GLS/FGLS estimation of the whole system of SUR.  Surprisingly, it appears that no paper 

has so far considered when the equation-by-equation OLS estimation of a subset of regression 

coefficients in a general SUR model is asymptotically as efficient as the GLS/FGLS estimation 

applied to the whole system of SUR.  In this paper, we seek to fill this gap.  More precisely, 

using the GMM interpretation of OLS and GLS/FGLS estimation of SUR models and the partial 

redundancy of moment conditions of Breusch, et al. (1999), we will establish the necessary and 

sufficient condition for the OLS estimator of a subset of regression coefficients of a general SUR 

model to be asymptotically efficient.  To be more specific, suppose that we have a system of 

household demand equations for durable goods and nondurable goods and that our main interest 



is in the estimation of the parameters in the demand equations for nondurable goods.  Then the 

current paper seeks to find the necessary and sufficient condition for the equation-by-equation 

OLS estimation of the regression coefficients in the demand equations for nondurable goods to 

be asymptotically as efficient as the FGLS estimation applied to the whole system of demand 

equations.  Thus, the current paper extends the full asymptotic efficiency result of Qian (2008) to 

the partial asymptotic efficiency of OLS estimation of SUR models.  Here we want to point out 

the main difference between this paper and the current literature on efficient estimation of SUR 

models.  Our paper is concerned with the comparison of asymptotic efficiency of OLS and FGLS 

estimators of a subset of regression coefficients of SUR models, while almost all of the published 

papers on efficient estimation of SUR models, with the exception of Ravankar (1974), Schmidt 

(1978) and Gourieroux and Monfort (1980),
2
 focused on the numerical equality of OLS and GLS 

estimators of the whole vector of regression coefficients.  As such, our necessary and sufficient 

condition for the partial asymptotic efficiency of the OLS estimator (Theorem 2 in the next 

section) generalizes various sufficient (and necessary in some cases) conditions for the numeral 

equality of OLS and GLS/FGLS estimators of SUR models.   

   The rest of the paper is organized as follows.  Section 2 presents the main results, while 

Section 3 contains a small Monte Carlo simulation.  Section 4 briefly concludes. 

 

2.  Partial Efficiency of OLS Estimation of SUR Models 

 Consider a system of G seemingly unrelated regressions: 

  gtggtgt 'xy ε+β= ,  g = 1, 2, …, G;  t = 1, 2, …, T,                                               (1) 

where the subscripts g and t index equations and observations, respectively, gty  is the dependent 

variable of the g-th equation, gtx  is a 1k g ×  vector of explanatory variables, gβ  is a 1k g ×  

vector of unknown regression coefficients, gtε  is the disturbance term, and T is the sample size.   

 Stacking over equations for a given observation t, we can rewrite (1) as: 

  ttt 'Xy ε+β= ,  t = 1, 2, …, T,                                                                             (2) 

where )'y...,,y(y Gtt1t = , )x,,x(diagX Gtt1t = , )''...,,'( G1 ββ=β  and )'...,,( Gtt1t εε=ε .  We 

assume that )'XX(E tt  is nonsingular so that the system of SUR in (1) is identified. 

 Let tx  be an 1M×  vector of distinct explanatory variables appearing in system (1).  

Now, to be consistent with the SUR literature (see for example, chapter 7 of Wooldridge (2010)), 

we make the following two standard assumptions for the system of SUR in (1): 

 

Assumptions:  (SUR.1) 0)x(E tt =⊗ε , where ⊗  denotes the Kronecker product. 

(SUR.2) )]'xI()xI[(E)]'xI(')xI[(E tGtGtGtttG ⊗Σ⊗=⊗εε⊗ , with )'(E ttεε≡Σ . 

 

In the rest of the paper, we will assume that the covariance matrix Σ  is positive definite (p.d.).  

Because the covariance matrix is rarely known in applications, we only consider FGLS 

estimation of (1) in this paper.  Of course, when Σ  is known or diagonal, the result obtained in 

this paper also applies to GLS.  Also, for simplicity of derivation, we assume that )''x,'y( tt  is 

independent and identically distributed over observations. 

To define the moment conditions implied by Assumption (SUR.1), we further define 
*

gtx  

as a 1k*

g ×  (with g

*

g kMk −= ) vector of distinct regressors appearing in system (1) other than 



the g-th equation.  For example, if G=2, )''w,'w(x t2t1t1 = , )''w,'w(x t3t2t2 =  and there are no 

common elements in t1w , t2w  and t3w , then )''w,'w,'w(x t3t2t1t = , t3

*

t1 wx =  and t1

*

t2 wx = .  

Also, when tgt xx = , we define 0x*

gt = .  

Then, as explained in Qian (2008), Assumption (SUR.1) implies the following two sets of 

moment conditions: 
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where *

tX  is the block-diagonal matrix with 
*

gtx  on the g-th block.  Hereafter, we will refer to 

(MC-W) and (MC-C) as the within- and cross-equation moment (or orthogonality) conditions, 

respectively. 

Let β̂  and β
~

 be the equation-by-equation OLS and the FGLS estimators of β  in (1), 

respectively.  Now, notice that the equation-by-equation OLS estimator of β  is just the (optimal) 

GMM estimator based on (MC-W), and the FGLS estimator of β  is asymptotically equivalent to 

the optimal GMM estimator based on the joint moment conditions (MC-W) and (MC-C);  see, 

for example, Theorem 8.4 of Wooldridge (2010, p. 221).  Thus, to show that the OLS and FGLS 

estimators of β  in (1) have the same asymptotic efficiency is equivalent to showing that the 

GMM estimator of β  using the moment conditions in (MC-W) has the same asymptotic 

efficiency as the optimal GMM estimator of β  using the moment conditions in both (MC-W) 

and (MC-C).  This is equivalent to showing that the cross-equation orthogonality conditions 

(MC-C) is redundant (in the sense of Breusch, et al. (1999)) given the within-equation 

orthogonality conditions (MC-W) for the efficient estimation of β .  In fact, Qian (2008) derives 

the necessary and sufficient condition for the asymptotic optimality of the equation-by-equation 

OLS estimator of the whole parameter vector β  in the system of SUR model (1).  To facilitate 

comparison with the new result of this paper (Theorem 2 below), we summarize the main result 

of Qian (2008) in Theorem 1. 

 

Theorem 1.  The equation-by-equation OLS estimator of β  in the SUR model (1) is 

asymptotically as efficient as the FGLS estimator of β , if and only if: 

  0)'rx(E jit

*

itij =σ , for i, j = 1, 2, ..., G, and ji ≠ ,                                                 (3) 

where ijσ  is the (i, j)-element of the covariance matrix (Σ ) and 

it

1

itititjtjtjit x)]'xx(E)['xx(Exr −−≡  is the population linear projection error of jtx  on itx . 

Proof:  See the theorem of Qian (2008, p. 1458).     

 

When the covariance matrix is diagonal or each regression equation in the system of SUR 

includes the same set of explanatory variables, condition (3) is obviously satisfied.  When the 



regressors in the SUR are treated as non-stochastic, we can easily verify that various necessary 

and sufficient conditions for the numerical equality of OLS and GLS estimators of regression 

coefficients in SUR models are sufficient but not necessary for (3); see for examples, Gourieroux 

and Monfort’s (1980, p. 1088), Baltagi (1988, 1989), Baksalary and Trenkler (1989) and Bartels 

and Fiebig (1991). 

 We now turn to deriving the necessary and sufficient condition for the equal asymptotic 

efficiency of OLS and FGLS estimation for a subset of regression coefficients in (1).  For this 

purpose and without loss of generality, suppose that we are now only interested in estimating the 

regression coefficients of the first g ( Gg1 <≤ ) equations in (1).  We thus further define:  
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We also partition the covariance matrix Σ  as 

  







ΣΣ
ΣΣ

=Σ
2221

1211
 , 

with 11Σ  gg×  and 22Σ  )gG()gG( −×− .  Given these notations and the partial redundancy 

condition of Breusch et al. (1999, Theorem 7) or Qian (2002, Theorem 2), we obtain Theorem 2. 

 

Theorem 2.  Let β̂  and β
~

 be, respectively, the OLS and FGLS estimators of β  in the system of 

SUR model (1).  Then, under assumptions (SUR.1)-(SUR.2), the OLS estimator 

)''ˆ,,'ˆ(ˆ
g11 ββ=θ   of )'',,'( g11 ββ=θ   is asymptotically as efficient as the FGLS estimator 

)''
~

,,'
~

(
~

g11 ββ=θ  , if and only if the following two conditions hold: 

  )'XX(E)]'XX(E)['XX(E)'XX(E t1t1

1

t111t1t111

*

t1t1

*

t1

−ΣΣ= ,                                    (4) 

  )'XX(E)]'XX(E)['XX(E)'XX(E t121t2

1

t2t2t2

*

t2t121

*

t2 Σ=Σ − .                                 (5) 

These two conditions are also equivalent to 

  0)'rx(E jit

*

itij =σ , for i = 1, 2, ..., G, j = 1, 2, ..., g, and ji ≠ ,                                (6) 

where ijσ  is the covariance between the disturbances of equations i and j, and 

it

1

itititjtjtjit x)]'xx(E)['xx(Exr −−≡  is the population linear projection error of jtx  on itx . 

Proof: In order to save space, the proof is omitted but is available from the authors on request.   

 

Now, comparing Theorems 1 and 2, we can easily see that condition (3) is sufficient but not 

necessary for condition (6).  Thus, Theorem 2 extends the full efficiency of OLS estimation of 

SUR models to the partial efficiency of OLS estimation for a subset of regression coefficients.  

Here we also notice that condition (4) only involves the first g equations of the system of SUR, 

while condition (5) partially depends on the correlation between the first g equations and the 



remaining (G-g) equations.  In fact, using Theorem 1 of Breusch, et al. (1999), we can easily 

verify that condition (4) is just the full redundancy condition of )(m 1t2 θ  given )(m 1t1 θ  for the 

estimation of 1θ , where the moment conditions are defined as, 
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 When the regressors in (1) are treated as non-stochastic, we can verify that Gourieroux 

and Monfort’s (1980, p. 1089) necessary and sufficient condition for the numerical equality of 

OLS and GLS estimators of a subset of regression coefficients in SUR models is sufficient but 

not necessary for (6).  Condition (6) is also related to Schmidt (1978).  More specifically, 

Schmidt (1978) shows that, for the estimation of the regression coefficients in overidentified 

equations, GLS/FGLS estimation applied to the group of overidentified equations results in the 

same estimator as GLS/FGLS estimation applied to the whole system.  To compare his finding 

with (6), let’s consider a three-equation system and assume that the third equation is just-

identified and that we are only interested in estimating the coefficients in the first two equations 

(that is, g=2).  For this case, condition (6) becomes 0)'rx(E jit

*

itij =σ  for i = 1, 2, 3 and j = 1, 2.  

Now, note that this condition is satisfied when i=3, because when the third equation is just-

identified, 0x*

t3 =  and 0)xx(Lxr
t3jtjtt3j =−=  for j = 1, 2.   Then, by Theorem 2, the OLS 

estimation of the regression coefficients in the first two equations is asymptotically as efficient as 

FGLS applied to the whole system of three equations, if and only if 0)'rx(E jit

*

itij =σ  for i, j = 1, 

2.  This according to Theorem 1 is just the necessary and sufficient condition for OLS of the first 

two equations to be as efficient as the FGLS applied to the first two equations.  Thus, the 

combination of Theorems 1 and 2 includes Schmidt’s (1978) finding as a special case.    

 Given Theorem 2, we can now provide several useful sufficient conditions for the partial 

asymptotic optimality of the OLS estimation of SUR models. 

 

Corollary.  The equation-by-equation OLS estimator of )'',,'( g1 ββ   in the SUR model (1) is 

asymptotically as efficient as the FGLS estimator of )'',,'( g1 ββ  , if one of the following 

conditions is true: 

(A)  The first g regression equations include the same explanatory variables and each of the 

remaining (G-g) regression equations is just-identified; 

(B)  The disturbances of the first g-equations are uncorrelated with each other and are also 

uncorrelated with any of the disturbances of the remaining (G-g) equations;  

(C)  The first g regression equations include the same explanatory variables and the disturbances 

of the first g-equations are uncorrelated with any of the disturbances of the remaining (G-g) 

equations;  

(D)  The disturbances of the first g-equations are uncorrelated with each other and each of the 

remaining (G-g) regression equations is just-identified. 

Proof:  It is easy to verify that any one of these conditions is sufficient for condition (6).   

 

Condition (A) is related to Schmidt (1978).  More precisely, Schmidt (1978) shows that FGLS 

applied to the sub-system of overidentified equations is asymptotically as efficient as the FGLS 

applied to the entire system of SUR.  Then, under Condition (A), FGLS applied to the first g 



equations is asymptotically equivalent to FGLS applied to the entire system (for the estimation of 

the regression coefficients in the first g equations).  Now, if each of the first g equations includes 

the same explanatory variables, it is well known that the equation-by-equation OLS estimation is 

algebraically identical to the FGLS applied to the first g equations.  Condition (B) says that when 

the first g equations are uncorrelated with the rest of the equations in the system, then FGLS 

applied to the first g equations results in asymptotically efficient estimation of the regression 

coefficients in the first g equations.  Now, if the disturbances of the first g equations are further 

uncorrelated with each other, OLS applied to each of the first g equations becomes 

asymptotically efficient.  Thus, Condition (B) extends one of Zellner’s (1962, p. 351) two well-

known sufficient conditions for the numerical equality of OLS and GLS estimators of the whole 

coefficient vector to a subset of coefficients.  Conditions (C) and (D) are various mixings of 

Conditions (A) and (B).  Thus, our corollary extends two well-known sufficient conditions for 

the numerical equality of OLS and GLS estimators of the whole parameter vector to the equal 

asymptotic efficiency of OLS and FGLS estimators for a subset of parameters.  

 

3.  Monte Carlo Simulations 

 The equivalence of the OLS and FGLS estimators of parameters of interest established in 

Theorem 2 is an asymptotic result.  In this section, we conduct a small Monte Carlo simulation to 

compare their finite sample performances when the condition of Theorem 2 is satisfied.  For this 

purpose, we consider the following three-equation system of SUR:
3 

 t1t11t1 x210y ε++= , t2t21t2 x610y ε++−= , t3t32t31t3 x3x520y ε+++=                   (7) 

Following Schmidt (1977), we set the variances of the disturbances equal to 1 and consider four 

alternative values of the correlations ( 21ρ , 31ρ  and 32ρ ), 0, 0.3, 0.6 and 0.9, where ijρ  is the 

correlation between itε  and jtε  for i, j = 1, 2, 3.  We also assume that we are only interested in 

estimating the regression coefficients of the first two equations, )',,,( 222011101 ββββ≡θ , where 

)',( 1110 ββ  and )',( 2120 ββ  denote the regression coefficients of the first and second equations, 

respectively.  Similarly, we use )',,( 323130 βββ  to denote the regression coefficients of the third 

equation.  For our various data generating processes (DGPs) in this simulation, we generate 

)',,( t3t2t1t εεε≡ε  by i.i.d. N(0, Σ ), where Σ  is the covariance matrix.  (Σ  is also the correlation 

matrix under our normalization of unit variances).  For our simulations, we consider four cases. 

Case 1:  21ρ =0, 31ρ =0 and 32ρ =0.  t11x  is generated by an i.i.d. uniform distribution over [0, 20] 

(that is, ~x t11 i.i.d. U(0, 20)), ~x t21 i.i.d. U(0, 50), ~x t31 i.i.d. U(0, 100), and ~x t32 i.i.d. U(0, 

200).  

Case 2:  31ρ =0, 32ρ =0 and t11x = t21x .  21ρ ∈{0.3, 0.6, 0.9}.  t11x = t21x  ~ i.i.d. U(0, 20), ~x t31

i.i.d. U(0, 100), and ~x t32 i.i.d. U(0, 200). 

Case 3:  21ρ =0, t11x = t31x  and t21x = t32x .  ∈ρρ ),( 3231 {0.3, 0.6, 0.9}×{0.3, 0.6, 0.9}. t11x = t31x  

~ i.i.d. U(0, 20), and t21x = t32x  ~ i.i.d. U(0, 50). 

Case 4: t11x = t21x = t31x .  ∈ρρρ ),,( 323121 {0.3, 0.6, 0.9}×{0.3, 0.6, 0.9}×{0.3, 0.6, 0.9}.  t11x =

t21x = t31x  ~ i.i.d. U(0, 20), and ~x t32 i.i.d. U(0, 200). 

 

  



Table 1.  Ratios of the MSE of OLS Estimator to the MSE of FGLS Estimator 

 

21ρ  31ρ  32ρ  T 
11β  

21β  
31β  32β  

Case 1 

0 0 0 20 0.9253 0.9226 0.9284 0.9241 

 50 0.9642 0.9644 0.9661 0.9692 

100 0.9772 0.9796 0.9817 0.9778 

Case 2:  t21t11 xx =  

0.3 0 0 20 0.9590 0.9612 0.9265 0.9266 

 50 0.9788 0.9800 0.9597 0.9655 

100 0.9882 0.9897 0.9801 0.9761 

0.6 0 0 20 0.9626 0.9649 0.9172 0.9283 

 50 0.9842 0.9849 0.9691 0.9589 

100 0.9899 0.9908 0.9814 0.9802 

0.9 0 0 20 0.9663 0.9664 0.9321 0.9283 

 50 0.9810 0.9806 0.9713 0.9665 

100 0.9903 0.9902 0.9811 0.9753 

Case 3:  t31t11 xx = , t32t21 xx =  

0 0.3 0.3 20 0.9577 0.9573   1.0576   1.0487 

 50 0.9808 0.9831   1.0781   1.0869 

100 0.9932 0.9896   1.0879   1.0968 

0 0.3 0.9 20 0.9538 0.9656   4.4687   1.0556 

 50 0.9835 0.9808   5.0269   1.0896 

100 0.9892 0.9901   5.0026   1.0885 

0 0.6 0.6 20 0.9554 0.9615   1.4402   1.4587 

 50 0.9811 0.9831   1.5505   1.5669 

100 0.9924 0.9890   1.5250   1.5528 

0 0.9 0.3 20 0.9614 0.9490   1.0490   4.3854 

 50 0.9825 0.9763 1.0914 5.1045 

100 0.9917 0.9910 1.0910 5.1732 

Case 4:  t31t21t11 xxx ==  

0.3 0.3 0.3 20 1.0000   1.0000   0.9999 1.0649 

 50 1.0000   1.0000   1.0001 1.1263 

100 1.0000   1.0000   1.0032 1.1318 

0.6 0.6 0.6 20 1.0000   1.0000   1.0086 1.5742 

 50 1.0000   1.0000   1.0010 1.7507 

100 1.0000   1.0000   1.0020 1.7644 

0.9 0.9 0.9 20 1.0000   1.0000   1.0261 4.7436 

 50 1.0000   1.0000   1.0076 6.2470 

100 1.0000   1.0000   1.0001 6.5542 

 

  



 It is easy to verify that, for the first two equations of (7), each of the four cases above is 

sufficient for condition (6) of Theorem 2.  Thus, for each case, the equation-by-equation OLS 

estimation of the coefficients in the first two equations of (7) is asymptotically as efficient as the 

FGLS estimation applied to the whole system of (7).  The main purpose of this simulation is to 

gauge how well this asymptotic equivalence result performs in finite samples.  Our simulation is 

carried out in GAUSS 14.  For each case we consider three sample sizes, T = 20, 50, 100, and for 

each sample size we use 10,000 replications.  Following Schmidt (1977) and Baltagi, et al. 

(1989) and to save space, we report in Table 1 the ratios of the mean square errors (MSEs) of 

OLS estimators of  11β , 21β    31β  and 32β  to the corresponding MSEs of the FGLS estimators.  

Due to space limitations, we only report selected combinations of ( 21ρ , 31ρ , 32ρ ) in Table 1, as 

other combinations exhibit similar patterns of the MSE ratios. 

 From Table 1, we observe that when the sample size is larger than 20, the ratios of the 

MSEs of OLS estimators of 11β̂  and 21β̂  to the corresponding MSEs of FGLS estimators are very 

close to 1 for Cases 1-3 and exactly equal to 1 for Case 4 (because in this case the OLS and 

FGLS estimators of 11β  and 21β  are numerically identical).  We thus conclude that, under the 

DGP designs of this simulation, the asymptotic equivalence established in Theorem 2 appears to 

hold well in finite samples.  However, it is worth pointing out that, as expected, Table 1 also 

indicates that the FGLS estimation applied to the whole system of SUR in (7) results in more 

efficient estimation of 31β  (in Case 3) and 32β  (in Cases 3 and 4) than the OLS estimation 

applied to the third equation alone.   

 

4.  Conclusions 

 In this paper, using the partial redundancy condition of Breusch, et al. (1999) and the 

moment conditions implicitly exploited by OLS and GLS/FGLS estimators of standard SUR 

models, we derived the necessary and sufficient condition for the asymptotic efficiency of the 

equation-by-equation OLS estimation of parameters of interest in systems of SUR.  The main 

result of this paper advances the current SUR literature that usually focuses on the efficient 

estimation of the whole system to the efficient estimation of a sub-system.  The four sufficient 

conditions provided in the Section 2 also generalize various sufficient conditions for the 

algebraic equivalence of OLS and GLS/FGLS estimators of the whole coefficient vector in a 

system of SUR to a subset of coefficients.  The results of this paper can also be applied to panel 

data models with small time dimension and a large number of cross-sections.  One possible 

extension of the current paper is to simultaneous equations models.  More specifically, the 

current literature on the relationship between 2SLS and 3SLS estimators has mainly focused on 

the estimation of all regression coefficients appearing in the system.  It would be of interest to 

see whether we could find a general necessary and sufficient condition for the 2SLS estimator of 

a subset of regression coefficients in a system of simultaneous equations to be asymptotically as 

efficient as the corresponding 3SLS estimator applied to the whole system.  This is left for future 

research. 

 

Notes 

1.  An equation in a SUR model is said to be overidentified if it does not include all of the 

explanatory variables appearing in the system.  Otherwise, the equation is said to be just-

identified.  See Schmidt (1978). 

 



2.  Ravankar (1974) and Schmidt (1978) consider SUR models in which one group of equations 

is just-identified and the remaining equations are overidentified.  They show that the GLS/FGLS 

estimation applied to the group of overidentified equations is as efficient as the GLS/FGLS 

applied to the whole system of equations (for the estimation of the coefficients in the 

overidentified equations).  Gourieroux and Monfort (1980) considers, among other things, the 

numerical equality of the equation-by-equation OLS estimator and the GLS estimator of SUR 

models.  They also consider the numerical equality of OLS and GLS estimators for a subset of 

regression coefficients in SUR models. 

 

3.  The parameters values are chosen partially based on the DGPs in Kmenta and Gilbert (1968) 

and Schmidt (1977).  Also, as shown in Breusch (1980), the Monte Carlo results are invariant to 

the specific values of the regression coefficients.   
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