


Economics Bulletin, 2014, Vol. 34 No. 2 pp. 810-818

1. Introduction

We study the limitations of the general space of deterministic, dominant-strategy incentive
compatible, individually rational, and Pareto-optimal combinatorial auctions in a model
with two players and two nonidentical items (four outcomes). Our study concludes that
even if one of the players is subject to publicly-known budget constraints then the space
includes dictatorial mechanisms. Moreover, it appears that the dictatorial aspect depends
on the introduction of budgets. We draw the above conclusion as the research community
has indication to believe that the general space of dominant-strategy incentive compatible,
individually rational and Pareto-optimal combinatorial auctions without budgets includes
only VCG mechanisms1. Therefore, the discovery of dictatorial mechanisms in our study is
most likely brought about by our inclusion of a budgeted player.

When attempting to create auctions for use in industry, theory and practice immediately
uncouple with the introduction of budgets. Consider that a central element of auction
theory is the set of players’ valuations, how much value each player assigns to each of the
auction’s possible outcomes. However, in practice players’ ability to pay is often less than
their valuation for the goods or services they desire. Even in the simple case of two people
bidding to acquire a new home it is not uncommon for one bidder to desire a home outside
of his or her means or for one of the parties to have significantly greater financial resources.
As such, it is important for designers to understand which parts of the budget-constrained
combinatorial auction domain are capable of supporting desirable mechanisms. Our result
takes a step in this direction by characterizing a portion of the dictatorial space.

Formally our model has multidimensional types2, private values, nonnegative prices,
quasilinear preferences for the players with one relaxation: one of the players is subject
to publicly-known budget constraints. More specifically, we show that if it is publicly known
that a player’s budget restricts his ability to pay, i.e., the restricted player values the possible
bundles more than his budget, then for mechanisms with two possible outcomes there are
two families of dictatorial mechanisms. In one family the unrestricted player is the dictator
and in the other family the restricted player is the dictator. The families of dictatorial mech-
anisms are unique for all possible dictatorial mechanisms in the space. The mechanisms in
the dictatorial families are identical except for one or two price parameters that differentiate
them.

Budgets are central to most economic theory but relatively little attention has been given
to them in auction theory as the theory mainly focuses on models with quasilinear preferences
without budgets and income effects. (For relatively recent works that study auctions with
budgets see Che and Gale (1998), Benoit and Krishna (2001), Laffont and Robert (1996),
Pai and Vohra (Unpublished results 2008), Maskin (2000)). Similar to models in recent work
dealing with budgeted auctions, our model integrates quasilinear preferences with budgets
and captures players’ utilities in situations such as home buying where a buyer’s preferences
may exceed his or her available budget.

1See Lavi et al. (2003). Lavi et al. (2003) do not require Pareto optimality but requires other properties
that imply Pareto optimality

2Multidimensional types, meaning that a player may have a separate arbitrary value for each of the four
possible outcomes.
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There are classic as well as recent results showing that dictatorship (or sequential dic-
tatorship) is the only mechanism that is not subject to individual manipulations and is
Pareto optimal in mechanism design models without the quasilinearity assumption (See Ar-
row (1950), Budish and Cantillon (2012), Gibbard (1973), Hatfield (2009), Satterthwaite
(1975)). Arrow’s seminal impossibility, Arrow (1950), shows that for unrestricted domains
under determinism and transitivity axioms, independence of irrelevant alternatives (IIA),
and Pareto-optimality conditions, every social choice function must be a dictatorship or im-
posed. However, the conditions of Arrow’s theorem as well as the conditions of Gibbard
(1973) and Satterthwaite (1975) can be satisfied when the requirement for unrestricted do-
mains is relaxed, as was shown for one-dimensional domains such as single peaked. While
the possibility/impossibility of maintaining Arrow’s desired properties is known for the space
of the nonmonetary domain of preferences, when restricting attention to the assumption of
side payments and transferable currency much is yet left to be understood.

In recent years several papers studied budget-constrained combinatorial auctions. Dobzin-
ski et al. (2012) showed that there does not exist a deterministic auction that is individually
rational, dominant-strategy incentive compatible, and Pareto optimal with potentially neg-
ative prices and privately known budgets, even when players are one-dimensional types.
Fiat et al. (2011) showed that the same impossibility holds for one-dimensional types with
different items and publicly known multi-item demand. Lavi and May (2012) also showed
the same impossibility with publicly known budgets if multidimensional types (two identical
items with three outcomes) are considered.

Dobzinski et al. (2012), Fiat et al. (2011), Lavi and May (2012) allow negative prices to
exist, i.e., some players are paid for participation in the auction either by the mechanism or by
the other players. Practical auction implementations usually can not afford or are unwilling
to consider paying bidders for their participation nor are they interested in encouraging side
payments among the participants. Therefore, similar to Maskin (2000) ’s model, we chose
to assume that all prices are nonnegative. The assumption that all prices are nonnegative
narrows down the domain of possible allocations in comparison to the potential negative
prices model with multidimensional types. Nevertheless some of the the mechanisms which
fulfill the three properties of dominant strategy incentive compatible, individually rational,
and Pareto optimal in the nonnegative price model are not included in the mechanism
space that fulfills the same properties in the negative price model. The reason for the
above is the property of Pareto optimality. Since the model with nonnegative prices has a
smaller set of possible allocations there exist situations where a mechanism does not fulfill
the Pareto optimal property in the model with negative prices but does fulfill the Pareto
optimal property in the nonnegative price model.

Dobzinski et al. (2012) also characterizes the possibility space of dominant-strategy in-
centive compatibility and Pareto optimal budget-constrained combinatorial auction mecha-
nisms. Dobzinski et al. (2012)’s characterization is restricted to one-dimensional types and
therefore their possibility space characterization does not imply the possibility space in our
model with multidimensional types. More specifically, Dobzinski et al. (2012) showed that
for multi-unit demand and identical items Ausubel’s clinching auction, which assumes public
budgets and additive valuations, uniquely satisfies the properties described above. Similarly,
Ausubel’s clinching auction was concluded by Fiat et al. (2011) for one-dimensional types
with different items and publicly known multi-item demand. The one-dimensional types
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model for unit-demand players with private values and budget constraints yields several
deterministic mechanisms that fulfill the properties of incentive compatible and Pareto opti-
mality (see Ashlagi et al. (2010)). In nondeterministic mechanisms with a one-dimensional
types model (one indivisible unit) Maskin (2000) characterizes constrained-efficiency mech-
anisms, which are mechanisms that maximize the expected social welfare under Bayesian
incentive compatibility and budget constraints in a nonnegative price model.

2. Notation and Definitions

We consider combinatorial auction mechanisms with 2 different types of items and 2 players.
Let N = {1, 2} be the set of players and C = {c1, c2} be the set of items. Let B be the set
of all subsets of items, i.e., B = 2C = {∅, {c1}, {c2}, {c1, c2}}.

Players are multi-minded3 such that each player i has a private value vi(B) for every
bundle B ∈ B drawn from a valid valuation space Vi 4. We denote player i’s private values
by the triple Vi = (vi(c1), vi(c2), vi(c1, c2)) ∈ Vi and assume that vi(∅) = 0, i.e., the valuation
of the empty bundle is zero for both players.

We assume that player 1 has a limited budget, b1, while player 2 has an unlimited budget
for acquiring the items. We also assume that player 1’s budget is publicly known information.

We denote the auction mechanism F (V1, V2, b1) = (B1, B2, p(B1), p(B2)) where Bi is the
bundle allocated to player i and p(Bi) is bundle Bi’s price. We assume that all prices are
nonnegative, i.e., p(Bi) ≥ 0 for i = {1, 2}.

Denote by vmin = mini vi(B), B ∈ B, B 6= ∅.
Throughout the paper we assume vmin > b1 and “vmin valuation space” refers to any valuation
space such that vi(B) > b1 for every i and every B ∈ B, B 6= ∅.

Definition 2.1. Player 1, player 2, and the auctioneer’s utilities are defined as follows:
player 1’s utility is

u1(F (V1, V2, b1)) =

{
v1(B1)− p(B1) if p(B1) ≤ b1
−∞ otherwise

player 2’s utility is
u2(F (V2, V2, b1)) = v2(B2)− p(B2)

the auctioneer’s utility is

ua(F (V1, V2, b1)) = p(B1) + p(B2)

For notational simplicity whenever F, V1, V2, and b1 are clear from the context we denote
ui(F (V1, V2, b1)) by ui.

3A multi-minded player is a player that may have a separate arbitrary value for each of the four possible
outcomes.

4Through the paper we consider valuation spaces where not all valuations are included in the valuation
space.
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Definition 2.2. Determinism
An auction mechanism F (V1, V2, b1) is called deterministic if for every given input it out-
puts a single outcome.

Definition 2.3. Dictatorship
An auction mechanism F (V1, V2, b1) is called dictatorial if there exists a player, i ∈ {1, 2}
(the dictator), such that for every Vi, Vî, V

′
î
, ui(F (Vi, Vî, b1)) = ui(F (Vi, V

′
î
, b1)).

Intuitively, a mechanism is a dictatorship if there is a player i such that the other player’s
valuations, î, can not affect his utility. Note that if dictator i is indifferent to two alternative
allocations then player î’s valuations can affect the output.

Our definition of a dictatorial mechanism is a natural extension of Arrow’s dictatorial
social welfare function to a monetary domain. Consider Arrow (1950)’s definition: “A social
welfare function is said to be “dictatorial” if there exists an individual i such that for all x
and y, xPiy implies xPy regardless of the ordering of all individuals other than i, where P
is the social preference relation corresponding to those orderings.”

As in Arrow’s setting the outcome is identical for all players, Arrow’s definition can
be interpreted to define bossy dictatorship and non-bossy dictatorship. A bossy dictator
determines the outcome as a whole regardless of the other players’ preferences and a non-
bossy dictator determines his own utility regardless of the other players’ preferences.

In a monetary domain a dictator that determines the outcome as a whole (i.e., bossy dic-
tator) determines the other players’ payments and therefore will determine negative prices
for himself (meaning that he will determine that the other players will pay him). Such are
the Groves dictatorial mechanisms where there is zero social welfare without the dictator’s
participation and therefore society should pay the dictator the amount of social welfare
that the other players benefit from when the dictator participates, i.e., negative prices for
the dictator. Our model and results are based on the requirement for nonnegative prices
and therefore a bossy dictatorial mechanism is not suitable. Moreover Groves’s dictatorial
mechanism is more loosely related to Arrow’s dictatorial social welfare function than our
definition as Groves’s dictatorial mechanism does not necessarily imply that when the dic-
tator is present no other player can influence the outcome, otherwise it would have meant
that the dictator has a constant price.

Next we define three properties: Individual Rationality (IR), Pareto Optimality and
Truthfulness.

Definition 2.4. Property 1: Individual Rationality (IR)
An auction mechanism F (V1, V2, b1) is called individually rational if for every player i,
ui(F (V1, V2, b1)) ≥ 0. Specifically the following must hold:

• v1(B1)− p(B1) ≥ 0 and p(B1) ≤ b1(player 1’s IR)

• v2(B2)− p(B2) ≥ 0 (player 2’s IR)

Note that the auctioneer’s utility is nonnegative from our assumption that all the prices are
nonnegative.
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Definition 2.5. Property 2: Pareto Optimality
An auction mechanism F is called Pareto optimal if for every input V1, V2, b1, such that
(V1, V2) in V1×V2 and output allocation (B1, B2, p(B1), p(B2)), there is no allocation (B′

1, B
′
2, p(B′

1), p(B′
2)) 6=

(B1, B2, p(B1), p(B2)) such that all the following inequalities hold, with at least one strong
inequality:

• u1(B
′
1, B

′
2, p(B′

1), p(B′
2)) ≥ u1(F (V1, V2, b1))

• u2(B
′
1, B

′
2, p(B′

1), p(B′
2)) ≥ u2(F (V1, V2, b1))

• ua(B
′
1, B

′
2, p(B′

1), p(B′
2)) ≥ ua(F (V1, V2, b1))

Definition 2.6. Property 3: Truthfulness
An auction mechanism F (V1, V2, b1) is called truthful if neither of the two players can
increase his own utility by reporting false valuations. That is, given the true valuations
V1 ∈ V1 and V2 ∈ V2, for every V ′

1 ∈ V1 and V ′
2 ∈ V2 the following hold:

• u1(F (V1, V
′
2 , b1)) ≥ u1(F (V ′

1 , V
′
2 , b1))

• u2(F (V ′
1 , V2, b1)) ≥ u2(F (V ′

1 , V
′
2 , b1))

3. Dictatorial Mechanisms

In this section we study all of the two-outcome dictatorial mechanisms that satisfy the three
properties in the vmin valuation space.

Lemma 3.1. Let F be a deterministic mechanism that satisfies the properties of IR, truth-
fulness, and Pareto optimality.

Then for every b1 > 0 the following two statements hold:

• There exists V1 and V2 in the vmin valuation space such that
F (V1, V2, b1) = (B1, B2, p(B1), p(B2)) and B1 = {c1} and B2 = {c2}.

• There exists V ′
1 and V ′

2 in the vmin valuation space such that
F (V ′

1 , V
′
2 , b1) = (B′

1, B
′
2, p(B′

1), p(B′
2)) and B′

1 = {c2} and B′
2 = {c1}.

Proof of Lemma 3.1. Suppose to the contrary w.l.o.g. that the allocation B1 = {c1} is
not feasible. Assume the following valuations:

• v1(c1, c2) = v1(c1) = 3 · b1, v1(c2) = 2 · b1

• v2(c1, c2) = v2(c2) = v2(c1) = 3 · b1

The allocation B1 = {c1, c2}, with any p(B1) = x, can not be Pareto as the allocation
B′

1 = {c1} with p(B′
1) = x and p(B2) = ε < b1 is strictly better for player 2 and the

auctioneer while player 1 is indifferent. The allocation B′′
2 = {c1, c2} cannot be Pareto for

similar arguments. Any allocation B̄1 = {c2} cannot be Pareto as switching the singletons
such that B̄′

1 = {c1}, B̄′
2 = {c2}, p(B̄′

1) = p(B̄1) and p(B̄′
2) = p(B̄2) is strictly better for
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player 1 while player 2 and the auctioneer are indifferent. Therefore the allocation B1 = {c1}
must be feasible as it is the only option for these valuations.

A similar argument can show that allocation B′
1 = {c2} and B′

2 = {c1} must also be
feasible.

Conclusion 3.1. We therefore conclude that any mechanism that satisfies the three prop-
erties and has exactly two outcomes must have outcomes B′

2 = {c1} or B′′
2 = {c2}.

Our main theorem follows.

Theorem 3.1. There are two unique families of dictatorial mechanisms with two outcomes
that satisfy the properties of IR, truthfulness, and Pareto optimality.

Family I - player 1 is the dictator:
p(B1) = 0 and p(B2) = x such that 0 ≤ x ≤ b1. Then x can either be a constant or a
function g of V1 as long as for every feasible V1, 0 ≤ g(V1) ≤ b1.
If v1(c1) > v1(c2) or (v1(c1) = v1(c2) and v2(c2) ≥ v2(c1)) then B1 = {c1} and B2 = {c2} else
B1 = {c2}, B2 = {c1}.

Family II - player 2 is the dictator:
p(B1) = x′ and p(B2) = y such that 0 ≤ x′, y ≤ b1 and (x′ = b1 or y = 0). Then x′ can
either be a constant or a function g′ of V2 as long as for every feasible V2, 0 ≤ g′(V2) ≤ b1.
If v2(c1) > v2(c2) or (v2(c1) = v2(c2) and v1(c2) ≥ v1(c1)) then B1 = {c2}, B2 = {c1} else
B1 = {c1} and B2 = {c2}.

Proof of Theorem 3.1. From Lemma 3.1 it follows that if there are two outcomes then
the outcomes are the two singletons. We first show that for any dictatorial mechanism with
two possible outcomes that satisfies the three properties the prices are as follows:

1. If player 1 is the dictator then p(B1) = 0 and p(B2) = x such that 0 ≤ x ≤ b1.
Suppose that player 1 is the dictator. We start by proving that p(B2) = x for any
B2 of the two possible outcomes. Suppose to the contrary that when B2 = {c1} then
p(B2) = x, and when B′

2 = {c2} then p(B′
2) = y. From the truthfulness of player 2

it follows that x = y. Otherwise, whenever player 1 is indifferent to the two singleton
alternatives, player 2 might be better off lying and changing the allocation to the less
preferred item for a lower price. If x > b1 then the allocation is not IR whenever
b1 < v2(c1), v2(c2) < x. Therefore we conclude that p(B2) ≤ b1.

We continue by proving that p(B1) = 0. Suppose to the contrary that when B1 = {c1}
then p(B1) = x′ and when B′

1 = {c2} then p(B′
1) = y′. Suppose w.l.o.g. that x′ < y′.

Consider the valuations v2(c1) > v2(c2), v1(c2) > v1(c1), v1(c1)−x′ > v1(c2)−y′. Then
from player 1’s truthfulness the mechanism must allocate B1 = {c1} for p(B1) = x′.
This allocation is not Pareto as the allocation B′

1 = {c2}, for the same prices, is better
for the two players while the auctioneer is indifferent. Therefore we conclude that
x′ = y′. Suppose to the contrary that p(B1) = x′ 6= 0. Let 0 < ε < 2 ·x′ and x = p(B2).
Consider the valuations v1(c1) = v1(c2) + ε and v2(c1) = v2(c2) + 3ε. As the dictator is
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player 1 the outcome must be B1 = {c1}. However, this allocation is not Pareto as the
allocation B′

1 = {c2}, B′
2 = {c1}, p(B′

1) = x′ − 2ε > 0 and p(B′
2) = x + 2ε is strictly

better for the two players while the auctioneer is indifferent.

2. If player 2 is the dictator then there are two options:

• p(B2) = 0 and p(B1) = x′ such that 0 ≤ x′ ≤ b1. The proof of this case is similar
to the previous case where player 1 is the dictator.

• p(B2) = y such that 0 ≤ y ≤ b1 and p(B1) = b1. In addition to the previous
case where p(B2) = 0, it might be that player 2 pays a nonzero price. The proof
that player 2 pays a price y that is the same in both possible outcomes is identical
to the equivalent case where player 1 is the dictator. Player 2’s price y can be
nonzero as any such allocation is Pareto following from the fact that player 1’s
budget is saturated, i.e. p(B1) = b1, and therefore he cannot pay a higher price
for a better item.

We now show that the two families above satisfy the three properties.

• IR - no player pays more than b1 and all values are assumed to be higher than b1.

• Truthful - the dictator gets his best choice for a fixed price, which is obviously better
than the other item for the same price. The other player either can not change the
allocation or (if the dictator is indifferent) is allocated the best choice for a fixed price.

• Pareto optimal - switching the items can not benefit both players. If the dictator is
allocated the preferred item for free then in both cases the dictator is worse off from
switching the items. If on the other hand player 2 is the dictator and he pays a nonzero
price then it must be the case that p(B1) = b1. In order for the dictator to benefit the
price must be lower. The auctioneer will be indifferent only if player 1 pays the gap but
as player 1 payed b1, so he can not pay any more. Allocating both items to one player
is strictly worse for the other player as all the utilities are strictly positive.

4. Concluding Comment

Though our possibility space analyses only two players, two items, and two outcome mecha-
nisms it is easy to see that the mechanisms proved in the space can be extended to deal with
more items, more players, and more possible outcomes. Such an extension is the subject of
our future work.
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