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1 Introduction

The expenditure function in additive random utility models (ARUM1) was introduced by
Karlström and Morey (2004). Later, Dagsvik and Karlström (2005) provided a comprehen-
sive treatment of duality in ARUMs. The expenditure function represents the minimum
income that allows the individual to retain a given utility when the price and quality of the
alternatives change.

The expenditure function is a useful construct to derive welfare measures. This is because
the expectation of the compensating variation, which is commonly used as welfare measure,
is obtained simply from the expectation of the expenditure function.

The formula which provides the expectation of the expenditure function is an integral
which is particularly convenient when choice probabilities are in closed form. When this
occurs, as an example in the widely used multinomial and nested logit, the formula is a
one-dimensional integral which is solved using commercially available mathematics software.

The formula of the expectation of the expenditure function is derived under the following
assumptions: (i) the random terms do not change between the state before the change in
price and quality and the state after, (ii) the expenditure is restricted to be positive, (iii) the
choice set is unchanged between the two states. The assumptions are motivated essentially
by tractability reasons.

The assumption of unchanged random terms, i.e. perfect before-after correlation, is com-
mon in the literature on welfare in random utility models. The compensating variation is
computed under this assumption since the fundamental contribution by McFadden (1999).
However, it is justi�ed to consider other before-after correlation patterns of the random
terms to take into account changes in unobserved attributes or intra-personal taste varia-
tion. Only recently authors have dealt with the measurement of the compensating variation
under imperfect before-after correlation. Zhao et al. (2102) have carried out a numerical
investigation. Delle Site and Salucci (2013) have provided both theoretical and numerical
results, in particular have proved that the unconditional (with respect to the choice made)
expectation of the compensating variation is independent of the before-after correlation if
there is no income e�ect, and that the before-after correlation has impacts on the condi-
tional expectations of the compensating variation. To date, no author has considered the
assumption of imperfect before-after correlation for the expenditure function.

The restriction in sign is unnecessary. The individual, depending on her random terms,
may need to compensate to an extent to which she runs into debt: in such occurrence the
expenditure function takes a negative value.

Changing choice set is of interest in applications because of the possibility of deleted and
new alternatives. As an example, in transportation, ARUMs are frequenly used to represent

1ARUM: additive random utility model
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the choice for new modes, e.g. a metro or a high-speed rail, or new routes.
The present note provides the expression of the expectation of the expenditure func-

tion in cases of imperfect before-after correlation of the random terms, unrestricted-in-sign
expenditure, and changing choice set.

The note is organised as follows. Section 2 provides the preliminaries from probability
theory and statistics that are necessary for derivation of the subsequent results. Section
3 provides the fundamentals of random utility models and introduces the joint before-after
distribution of the random terms. Section 4 deals with the expenditure function and welfare.
Section 5 concludes.

2 Preliminaries

Let X = [X1, ..., Xn]T , X ∈ Rn , be a n-variate random vector in the n-dimensional Euclidean
space Rn. An event is characterised by draws of X that belong to a particular set S. Let
P (S) be the probability distribution, or law, of X.

We make the following assumption: the probability distribution P (S) of X2 is char-
acterised by a cumulative distribution function (CDF) denoted by F (x1, ..., xn) and by a
probability density function (PDF) denoted by f (x1, ..., xn). Measure theory applied to
probability (Athreya and Lahiri, 2010; Corbae et al., 2009) ensures the existence of a PDF
if and only if the probability distribution P (S) is absolutely continuous with respect to
Lebesgue measure on Rn. This means that any (Borel-measurable) set of measure zero
according to Lebesgue measure is assigned measure zero under P. This does not ensure,
however, that the PDF is continuous. We make the additional assumptions that the PDF
f (x1, ..., xn) is continuous in Rn.

By de�nition of CDF we have:

F (x1, ..., xn) = P (X1 < x1, ..., Xn < xn)

=

ˆ x1

X1=−∞
...

ˆ xn

Xn=−∞
f (X1, ..., Xn) dXn...dX1 (1)

where the multiple integral in the right-hand side is written as an iterated integral with
the �rst integration carried out with respect to Xn and the last with respect to X1. The
Fubini's theorem3 allows to exchange the order of integration.

2Random variables are denoted by capital letters, speci�c values by lower case letters.
3The Fubini's theorem states that the double integral over a rectangle of a continuous function can be

computed as an iterated integral and it is possible to exchange the order of integration (Stewart, 2007). The
theorem can be extended to multiple integrals and in�nite range integrals.
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For the �rst-order derivatives of the CDF we have, by an application of the fundamental
theorem of calculus and the Fubini's theorem:

∂F (x1, ..., xn)

∂xi
= F i (x1, ..., xn)

=
∂

∂xi

ˆ xi

Xi=−∞
(

ˆ x1

X1=−∞
...

ˆ xi−1

Xi−1=−∞

ˆ xi+1

Xi+1=−∞
...

ˆ xn

Xn=−∞
f (X1, ..., Xn)

dXn...dXi+1dXi−1...dX1)dXi

=

ˆ x1

X1=−∞
...

ˆ xi−1

Xi−1=−∞

ˆ xi+1

Xi+1=−∞
...

ˆ xn

Xn=−∞
f (X1, ..., Xi−1, xi, Xi+1, ..., Xn)

dXn...dXi+1dXi−1...dX1

i = 1, ...n (2)

The probability of the event S = {Xj < xj ∀j 6= i; Xi ∈ A ⊆ R} can be expressed in
terms of the �rst-order derivative of the CDF:

P (S) =

ˆ
A

F i (x1, ..., xi−1, Xi, xi+1, ..., xn) dXi (3)

Eqn (3) follows from eqn (2). The integrand is the �rst-order derivative of the CDF with
respect to the i-th argument calculated in the point [x1, ..., xi−1, Xi, xi+1, ..., xn]T .

The following lemma provides the expectation of a random variable of any sign in terms
of its CDF.

Lemma 1. The expectation E [X] of a random variable X characterised by a CDF F (x) is

given by:

E [X] =

ˆ +∞

0

[1− F (x)] dx−
ˆ 0

−∞
F (x) dx (4)

Proof. The lemma is a well-known result in probability theory. A proof is in Delle Site and
Salucci (2013).
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3 Random utility models

The standard microeconomic foundation to discrete choice models (found in McFadden,
1981) extends the classical consumer's model of microeconomics and considers an individual,
endowed with income y, who consumes a discrete good and a composite good. The discrete
good includes a set of J mutually exclusive alternatives. Given the utility-maximising be-
haviour subject to a constraint on income spent, when alternative i is chosen the individual
will be characterised by a conditional indirect utility function ui.

The utility ui is expressed by the additively separable structure: ui = vi + εi, i=1,..J ,
where vi is the deterministic component, referred to as systematic utility, and εi is the
random, or error, component. This structure for ui de�nes the class of ARUMs. The
systematic utility vi of each alternative is assumed to be a strictly increasing function vi (y)
of income y, and to depend on the price and other qualitative attributes of the alternative.

In the case of absence of income e�ects, i.e. when income does not a�ect choice, the
systematic utilities take a linear form in income according to a common coe�cient across
alternatives.

When income e�ects are considered, i.e. when income a�ects choice, the functional form
of systematic utilities that is commonly used in applied work is the translog. Examples of
application are Herriges and Kling (1999), Franklin (2006) and Tra (2013). Another form is
the quadratic. Examples of application are Jara-Díaz and Videla (1989) and Cherchi et al.
(2004).

The assumption on the probability distribution of the J-variate random vector ε =
[ε1, ..., εJ ]Tde�nes the ARUM4. We assume that the random vector ε is characterized by a
PDF f (η1, ..., ηJ) and a CDF F (η1, ..., ηJ). Let Σ be the covariance matrix of size J × J .

If the distribution is multivariate normal the probit model is obtained. McFadden (1978)
has introduced the generalised extreme value ARUMs, usually referred to as GEV5, which
are obtained when the distribution is multivariate extreme value with particular properties.
The multinomial logit is a GEV where the random terms are independently and identically
distributed (i.i.d.) according to a Gumbel distribution (extreme value type I) across alter-
natives. The multivariate normal assumption is the most natural, but probit models su�er
from the limitation that choice probabilities need to be computed by simulation, which is
computationally demanding, because closed-form expressions are not available. The assump-
tion on the distribution of the random terms of GEV is motivated by tractability reasons,
because choice probabilities have closed-form expressions.

Consider now two states of the world, the state before a change in price and quality of
the alternatives, and the state after. Consider that the set of alternatives and the random

4Random terms are denoted by ε, speci�c values by η.
5GEV: generalised extreme value
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terms also may change between the two states. Quantities in the before state are denoted
by the prime symbol ′, quantities in the after state by the double prime symbol ′′.

Consider the joint distribution of the vector of random terms in the before state ε′ =
[ε′1, ..., ε

′
J ′ ] and the vector of random terms in the after state ε′′ = [ε′′1, ..., ε

′′
J ′′ ]. The joint

before-after distribution of the random terms is a (J ′ + J ′′)-dimensional multivariate: let
h (η′1, ..., η

′
J ′ , η

′′
1 , ..., η

′′
J ′′) be its PDF, H(η′1, ..., η

′
J ′ , η

′′
1 , ..., η

′′
J ′′) its CDF, and Ξ its covariance

matrix of size (J ′ + J ′′)×(J ′ + J ′′). Two special cases are the one where the before and after
random terms of each alternative are independent and the one where the before and after
random terms are the same, i.e. perfect correlation.

In welfare analysis two states are compared, the state before the change induced by a
policy, and the state after. The interest is in both the change in the systematic part of the
utility and the change in the random terms, because the computation of the welfare measure
is based on total utility. Thus, the consideration of the joint before-after distribution of the
random terms is key in welfare analysis.

The joint before-after distribution of the random terms needs to satisfy the property that
the multivariate marginal distribution of the before random term vector and the multivariate
marginal distribution of the after random term vector equal the distribution of the random
terms for the ARUM under consideration. Notice that the marginal distributions do not
uniquely determine the joint distribution, while the converse is true.

Denote by hε′ and hε′′ the marginal PDFs of, respectively, the before random terms and
the after random terms. We have:

hε′ (η1, ..., ηJ ′) =

ˆ
...

ˆ
RJ′′

h (η′1, ..., η
′
J ′ , η

′′
1 , ..., η

′′
J ′′) dη

′′
J ′′ ...dη

′′
1 = f (η1, ..., ηJ ′) (5)

hε′′ (η1, ..., ηJ ′′) =

ˆ
...

ˆ
RJ′

h (η′1, ..., η
′
J ′ , η

′′
1 , ..., η

′′
J ′′) dη

′
J ′ ...dη

′
1 = f (η1, ..., ηJ ′′) (6)

The integral in eqn (5) marginalizes out the after random terms. The integral in eqn
(6) marginalizes out the before random terms. Eqns (5) and (6) impose the equalities in
terms of PDFs. It follows that the equalities are satis�ed also for the marginals of the CDFs:
Hε′ (η1, ..., ηJ ′) = F (η1, ..., ηJ ′) and Hε′′ (η1, ..., ηJ ′′) = F (η1, ..., ηJ ′′).

4 Expenditure function and welfare

Consider the expenditure mi (U ′), conditional on the choice of alternative i in the after state,
necessary to achieve the utility level of the before state U ′ = max

i=1,..J ′
u′i = max

i=1,..J ′
[v′i (y) + ε′i].

The conditional expenditure mi (U ′) satis�es: v′′i [mi (U ′)] + ε′′i = U ′, i = 1, ..J ′′.
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The expenditure function M(U ′) is by de�nition (Karlström and Morey, 2004; Dagsvik
and Karlström, 2005):

M(U ′) = min
i=1,..J ′′

[mi(U
′)] (7)

The expenditure function M(U ′) is positive if the systematic utilities have a translog
form in income, because the argument of the logarithm is positive. This is not so if the
systematic utilities have a linear or quadratic form. In such cases, the expenditure function
can be either positive or negative.

The compensating variation C, by de�nition (McFadden, 1999), satis�es:

U ′ = max
i=1,..J ′′

[v′′i (y − C) + ε′′i ] (8)

The conditional compensating variation ci satis�es: U
′ = v′′i (y − ci)+ε′′i , i = 1, ..J ′′. Due

to the increasing monotonicity of the systematic utilities in income, we have:

C = max
i=1,..J ′′

ci (9)

By de�nition of conditional expenditure and conditional compensating variation, we have:
mi (U ′) = y − ci, i = 1, ..J ′′. Therefore, by eqns (7) and (9) we get:

M (U ′) = min
i=1,..J ′′

[mi(U
′)] = min

i=1,..J ′′
[y − ci] = y − max

i=1,..J ′′
ci = y − C (10)

.
By taking expectations we get:

E [M (U ′)] = y − E [C] (11)

which establishes the relationship between the expectation of the expenditure function
and the expectation of the compensating variation.

The following proposition provides the CDF Γ(m) of the expenditure function M(U ′) in
terms of the joint before-after CDF of the random terms H. Let H i (η′1, ..., η

′
J ′ , η

′′
1 , ..., η

′′
J ′′)

denote the derivative of H with respect to the i-th argument η′i.

Proposition 1. The CDF Γ(m) of the expenditure function M(U ′) is given by:

Γ(m) = 1−
∑

i=1,..J ′

ˆ +∞

−∞
H i(ε′i + v′i − v′1, ..., ε′i, ..., ε′i + v′i − v′J ′ ,

ε′i + v′i − v′′1(m), ..., ε′i + v′i − v′′i (m), ..., ε′i + v′i − v′′J ′′(m))dε′i (12)
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Proof. Consider the event A that the expenditure function M(U ′) is not lower than m:
A = {M(U ′) ≥ m}. The event A is the same as the event

{
ε′′j ≤ U ′ − v′′j (m) j = 1, ..J ′′

}
because the systematic utilities are monotonically increasing in income.

Consider the event Bi that alternative i is chosen in the state before and the utility level
U ′ is attained:

Bi =
{
v′j + ε′j ≤ v′i + ε′i = U ′ ∀j 6= i, j = 1, ..J ′

}
=
{
ε′j ≤ U ′ − v′j ∀j 6= i, j = 1, ..J ′

}
(13)

Consider the event Di = A ∩Bi. We can write:

Di =
{
ε′j ≤ U ′ − v′j ∀j 6= i, j = 1, ..J ′; ε′′j ≤ U ′ − v′′j (m) j = 1, ..J ′′

}
=
{
ε′j ≤ ε′i + v′i − v′j ∀j 6= i, j = 1, ..J ′; ε′′j ≤ ε′i + v′i − v′′j (m) j = 1, ..J ′′

}
(14)

Thus, the probability of event Di can be written, by eqn (3), in terms of the joint before-
after distribution of the random terms H as:

P(Di) =

ˆ +∞

−∞
H i(ε′i + v′i − v′1, ..., ε′i, ..., ε′i + v′i − v′J ′ ,

ε′i + v′i − v′′1(m), ..., ε′i + v′i − v′′i (m), ..., ε′i + v′i − v′′J ′′(m))dε′i (15)

By de�nition of event Di, the probability P(Di) provides the survival function of the ex-
penditure functionM(U ′) conditional on the choice of alternative i before. The unconditional
survival function of the expenditure function M(U ′) is given by:

1− Γ(m) =
∑

i=1,..J ′

ˆ +∞

−∞
H i(ε′i + v′i − v′1, ..., ε′i, ..., ε′i + v′i − v′J ′ ,

ε′i + v′i − v′′1(m), ..., ε′i + v′i − v′′i (m), ..., ε′i + v′i − v′′J ′′(m))dε′i (16)

which proves the proposition.

The following proposition provides the expectation E[M(U ′)] of the expenditure function
M(U ′) in terms of the joint before-after PDF of the random terms h and in terms of the
CDF of the expenditute function Γ(m).

159



Economics Bulletin, 2014, Vol. 34 No. 1 pp. 152-163

Proposition 2. The expectation E[M(U ′)] of the expenditure function is given by:

E[M(U ′)] =

ˆ
...

ˆ

RJ′+J′′

M (U ′) (ε′1, ..., ε
′
J ′ , ε

′′
1, ..., ε

′′
J ′′)h (ε′1, ..., ε

′
J ′ , ε

′′
1, ..., ε

′′
J ′′) dε

′
1...dε

′
J ′dε

′′
1...dε

′′
J ′′

(17)

E[M(U ′)] =

ˆ +∞

0

[1− Γ (m)] dm−
ˆ 0

−∞
Γ (m) dm (18)

whereM (U ′) (ε′1, ..., ε
′
J ′ , ε

′′
1, ..., ε

′′
J ′′) denotes thatM(U ′) is function of the before and after

random terms.

Proof. Eqn (17) follows from de�nition of expectation. Eqn (18) follows from lemma 1.

The expectation of the expenditure function can be computed using eqn (17) of propo-
sition 2 if the joint before-after PDF of the random terms h is available. This is the case
when the ARUM is probit, i.e. the random terms are multivariate normal. In a multivariate
normal distribution the marginals of any order (univariate and multivariate) are again nor-
mal. To obtain the marginal distribution over a subset of random variables, one only needs
to drop the irrelevant variables, i.e. the variables that are to be marginalized out, from the
expectation vector and the covariance matrix.

Therefore, for a MNP a joint before-after distribution with the postulated properties has
as PDF:

h (η′1, ..., η
′
J , η

′′
1 , ..., η

′′
J)

=
1

(2 · π)J · |Ξ|1/2
· exp

(
−1

2
· [η′1, ..., η′J , η′′1 , ..., η′′J ]

T · Ξ−1 · [η′1, ..., η′J , η′′1 , ..., η′′J ]

)
(19)

where |Ξ| is the determinant of the covariance matrix Ξ, and Ξ−1 is its inverse.
The expectation of the expenditure function in eqn (17) can be computed using Monte

Carlo integration since it is relatively easy to draw from a multivariate normal. The procedure
is as follows (Scheuer and Stoller, 1962). Let X have a multivariate normal distribution
with zero mean vector and covariance matrix Ξ. Let the lower triangular matrix L be
obtained by the Cholesky decomposition L · LT = Ξ. Then, given the random vector Z
with independent standard normal components, the draws of X are obtained using the
transformation: X = L · Z.
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The expectation of the expenditure function can be computed using Proposition 1 and
eqn (18) of proposition 2 if the joint before-after CDF of the random terms H is available.
When the ARUM is a multinomial logit, i.e. the random terms are i.i.d. Gumbel, it is
possible to obtain such function using the bivariate distribution proposed by Gumbel (1961)
and referred to as logistic model, or, according to Kotz et al. (2000), bivariate Gumbel type
B. This bivariate distribution, which has standard Gumbel marginals, has CDF given by:

H∗ (η′, η′′) = exp
{
− [exp (−s · η′) + exp (−s · η′′)]1/s

}
s > 1 (20)

The Pearson's correlation coe�cient, which equals the covariance since the marginals are
standard distributions, is ρ = 1− s−2.

The joint before-after CDF de�ned as:

H (η′1, ..., η
′
J , η

′′
1 , ..., η

′′
J) =

∏
i=1,..J

H∗ (η′i, η
′′
i ) (21)

possesses the postulated property that the multivariate marginal of the before random
terms and the multivariate marginal of the after random terms are i.i.d. Gumbel, i.e. we
have the logit model in both the before and the after state.

The covariance matrix Ξ includes only within-alternative before-after correlations, iden-
tical across alternatives and equal to ρ, and no inter-alternative correlation. This can be
proved by considering the joint before-after PDF (obtained from the CDF by derivation),
and then writing the expressions of the bivariate marginal distributions which are needed
to compute covariances. These distributions are obtained by integrating out the remain-
ing random terms. We have zero covariance, and correlation, when the random terms are
independent, with the bivariate marginal equal to the product of the univariate marginals.

The extension to changing choice set is straightforward if it assumed that alternatives
that exist in one state only are uncorrelated with all other alternatives.

The expectation of the expenditure function in eqn (18) can be computed using numerical
integration.

5 Conclusions

The note has provided an extension of the theory relating to the expenditure function in
additive random utility models. In addition to the theoretical interest per se, the results
are of relevance when the expectation of the expenditure function is computed for welfare
purposes.

It has been shown that it is possible to de�ne the expenditure function without imposing
the positivity restriction, and that it is possible to use the expenditure function in cases
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where the choice set changes from one choice to another. These results are of interest in
computation and in applied work.

It has also been shown how it is possible to relax the behaviourally unsound assumption of
perfect before-after correlation. In this respect, the estimation of the before-after correlation
emerges as a need. A literature exists on the estimation of probit models with panel data
(a review is in Train, 2009), future research might tackle the estimation of the before-after
correlation with GEV, and, in primis, with multinomial logit.

The note adds to the prevailing paradigm that considers stochastic welfare measures. The
paradigm is not without limitations. A stochastic welfare measure implies a fundamental
ambiguity in terms of policy advice, because, under the interpretation that regards the
random terms as individual speci�c, most cases would see both individuals with a positive
welfare measure, i.e. winners, and individuals with a negative welfare measure, i.e. losers.
Recent research (Zhao et al, 2012; Delle Site and Salucci, 2013) has made this evident.
The competing paradigm of representative consumer measures which is immune from this
limitation has been recently reconsidered (Delle Site, 2013).
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