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1 Introduction

Uzawa’s steady-state growth theorem (Uzawa (1961)) establishes one of the most
important structural properties of neoclassical growth models: technical change
must be labor-augmenting along a steady state starting in finite time.1 The theo-
rem exploits two fundamental components of neoclassical growth theory, namely,
the aggregate production function with constant returns to scale in capital and la-
bor and the role of capital accumulation.

The present paper studies a variant of Uzawa’s theorem where adjustment costs
interfere with the process of capital accumulation. In a new steady-state growth
theorem with adjustment costs I establish that capital-augmenting technical change
occurs in the steady-state of a non-stationary economy.2 Here, adjustment costs
drive a wedge between the evolution of gross capital investments and the evolu-
tion of capital. As a consequence, capital does not inherit the trend growth of to-
tal output but grows at a slower rate. The task of steady-state capital-augmenting
technical change is to bridge this gap.

The applicability of this finding is shown to be subject to a few qualifications.
First, it requires that the functional relationship between current gross capital
investment and the amount of future capital generated by it gives rise to dimin-
ishing returns. Second, the economy must be growing in steady state. Third, the
definition of the steady state requires output, consumption, gross capital invest-
ment, capital, currently installed capital, and the labor endowment to grow at a
constant rate whereas the growth rate of adjustment costs may vary.

This paper is organized as follows. Section 2 presents the neoclassical economy
with adjustment costs. Section 3 establishes the new steady-state growth theorem

1Arguably, the renewed interest in this theorem is due to the elegant and intuitive proof in-
vented by Schlicht (2006). The variant of Uzawa’s steady-state growth theorem alluded to in
the title of the present paper refers to the setup studied by Schlicht. His proof was successively
adopted by Jones and Scrimgeour (2008) and Acemoglu (2009). The proof of Theorem 1 below
builds on and extends Schlicht’s proof strategy. In the same vein, the contribution of Irmen (2013)
is related to Schlicht’s analysis. See, e. g., Russel (2004) for an alternative proof strategy based on
advective equations.

2See, e. g., Klump, McAdam, and Willman (2007) for a recent empirical study that reports
capital-augmenting technical for the US economy between 1953 to 1998.
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with adjustment costs (Theorem 1). Section 4 discusses qualifications to and ex-
tensions of the new theorem. Section 5 concludes. All proofs are relegated to the
Appendix.

2 The Model

Consider a closed economy in continuous time, i. e., t ∈ (−∞,+∞). There is a
single good produced according to the production function

Y(t) = F̃ [K(t), L(t), AF(t)] , (2.1)

where F̃ : R2
+ × AF → R+, Y(t) is total output, K(t) > 0 is the capital stock,

L(t) > 0 is the labor endowment, and AF(t) ∈ AF represents the components
of technological knowledge available at t. Here, AF is an arbitrary set. Assume
that F̃ is increasing in K(t) and L(t) and exhibits constant returns to scale in these
arguments.

Total output may either be consumed or invested in the capital stock. Hence,
with C(t) denoting consumption and I(t) gross capital investment the resource
constraint of the economy is

Y(t) = C(t) + I(t). (2.2)

When capital accumulates without adjustment costs, then each unit of gross cap-
ital investment generates one additional unit of future capital. Adjustment costs
drive a wedge between these variables. To model this, let Φ (I(t)) denote the
amount of future capital generated by a gross capital investment of I(t) units of
period t output where3

Φ : R+ → R+ and Φ(0) = 0. (2.3)

Henceforth, I shall refer to Φ (I(t)) as the “installation function of capital”. The
presence of adjustment costs is captured by the assumption that for all I(t) > 0

0 < Φ (I(t)) < I(t). (2.4)

3With only minor modifications Theorem 1 carries over to a setup where adjustment costs
hinge on the investment-capital ratio, I(t)/K(t), rather than on gross investment.
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Hence, some units of current output are used up in the process of capital instal-
lation. I refer to these units as adjustment costs, i. e.,

AC (I(t)) ≡ I(t)−Φ (I(t)) . (2.5)

Here, AC : R+ → R+ is strictly increasing and strictly convex for all I(t) > 0.
This requires

1 >
dΦ (I(t))

dI(t)
> 0 >

d2Φ (I(t))
dI(t)2 , (2.6)

i. e., the marginal effect of increasing I(t) must not be too pronounced and the in-
stallation of capital is subject to diminishing returns. The evolution of the capital
stock is then given by

K̇(t) = Φ (I(t))− δK(t), δ ∈ R+. (2.7)

where δ is the instantaneous depreciation rate of capital.

Finally, the labor endowment evolves exponentially with a time-invariant instan-
taneous growth rate that may be positive, zero, or negative, i. e.,

L(t) = L(0)egLt, L(0) > 0, gL ∈ R. (2.8)

In what follows, I will denote by gx(t) ∈ R the instantaneous growth rate of any
variable x(t) at t.

3 Steady-State Growth with Adjustment Costs

Definition 1 A steady state for the economy of Section 2 is a path along which the
growth rates of Y(t), C(t), I(t), K(t), Φ (I(t)), and L(t) are constant for all t ≥ τ ≥ 0.

The following theorem uses Definition 1 and extends Uzawa’s result to the neo-
classical economy with adjustment costs of the previous section.

Theorem 1 Consider the economy described by equations (2.1), (2.2), (2.7), and (2.8).
Suppose there exists τ < ∞ such that the economy is in steady state with Y(t) > C(t) >
0 for all t ≥ τ. Then, the following holds:
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I. gY = gC = gI .

II. Either

gK = gΦ = φgY 6= 0,

in conjunction with

Φ (I(t)) = c · I(t)φ, c > 0, 0 < φ < 1,

or

gK = gΦ = gY = 0.

III. For any t ≥ τ, total output has a representation as

Y(t) = F [B(t)K(t), A(t)L(t)] ,

where B(t) = egY(1−φ)(t−τ) ∈ R++ and A(t) = e(gY−gL)(t−τ) ∈ R++.

Capital per worker grows at rate φgY − gL. Output, consumption, and investment
per worker grow at rate g = gY − gL.

The main message of Theorem 1 is that capital-augmenting technical change may
arise in a steady state of a neoclassical economy with adjustment costs. The ex-
planation relies on the three parts of the theorem.

Part I shows that output, consumption, and gross investment must grow at the
same rate. This follows directly from the resource constraint (2.2) and the require-
ment that all three variables must be strictly positive.

The findings of Part II are derived from the capital accumulation equation (2.7)
where adjustment costs play a crucial role. For an economy with a growing or
a shrinking capital stock it is established that the installation function of capital
must be a power function. This is the only functional relationship under which
both Φ (I(t)) and I(t) can grow at constant rates (different from zero) while being
strictly positive. Positive but diminishing returns require φ ∈ (0, 1). The key im-
plication of diminishing returns for the growth process is that a doubling of gross
capital investments increases the capital stock by only φ × 100 percent. Hence,
the capital stock grows slower than Y(t), C(t), and I(t), and gK = gΦ = φgY 6= 0.
For an economy with gK = gΦ = gY = 0, there is no net capital accumulation
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and the level of adjustment cost incurred in each period remains constant. As a
consequence, diminishing returns in the production of capital have no bite for the
steady state and gY = gC = gI = gK = gΦ = 0.4

Part III reveals that capital augmenting technical change at rate gY (1− φ) occurs
in steady state. With capital growing at rate φgY this is what is needed to have
both arguments of the installation function, F [B(t)K(t), A(t)L(t)], grow at the
same rate. In other words, capital-augmenting technical change is called for to
bridge the gap that arises since diminishing returns in the installation function of
capital cause gross capital investments and capital to grow at different rates. To
see this in an intuitive way consider the production function (2.1). Dividing both
sides by Y(t) delivers for all t ≥ τ

1 = F̃
[

K(t)
Y(t)

,
L(t)
Y(t)

, AF(τ)

]
.

In steady state, the first two arguments must remain time-invariant. The capital-
output ratio declines over time since gK = φgY < gY. Capital-augmenting techni-
cal change at rate gY (1− φ) exactly offsets this tendency. The second argument
may grow, shrink, or remain constant depending on whether gL R gY. Here,
labor-augmenting technical change at rate gY − gL is the balancing force.

The final statement of Part III refers to the growth rates of per-worker variables.
Since capital grows (and shrinks) slower than the remaining economic aggre-
gates, the growth rate of capital per worker differs from the growth rate of labor-
augmenting technical change. Due to constant returns to scale of F [·, ·], the latter
is also the growth rate of output, consumption, and investment per worker.

There are two scenarios in which capital-augmenting technical change does not
arise. Theorem 1 suggests the first scenario of a stationary economy with gY =

gI = gK = 0. Here, the capital-output ratio remains constant so that there is no
gap to be filled by capital-augmenting technical change. The second scenario has
φ = 1 and 0 < c < 1, i. e., the installation function of capital is linear.5 Then,

4In fact, in a stationary environment the installation function of capital does not have to be a
power function but may take on any functional form consistent with the properties (2.3), (2.4),
and (2.6).

5This scenario is not explicitly included in Theorem 1 since it violates (2.6). This modification
affects Part II of Theorem 1 as explained in the main text. Part I remains unchanged whereas Part
III applies for φ = 1.
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capital accumulation of (2.7) requires in steady state that (gK + δ)K(t) = c · I(t).
Hence, gK = gΦ = gI = gY where the last equality follows from Part I. Intuitively,
the gap between gross capital investments and capital disappears if the installa-
tion function of capital exhibits constant instead of diminishing returns. As a
consequence, there is no role for capital-augmenting technical change to play in
steady state.

Overall, these two scenarios lead to the conclusion that adjustment costs per se
are not sufficient for steady-state capital-augmenting technical change. For the
latter to occur two interdependent conditions must be satisfied. First, there must
be diminishing returns in the installation function of capital. Second, the econ-
omy must not be stationary. In fact, the second condition implies that the first
one has bite.

Finally, observe that the second scenario above brings us closest to Uzawa’s orig-
inal theorem. In fact, with φ = 1 and c = 1 adjustment costs vanish and the
economy under scrutiny here coincides with the one for which Schlicht (2006)
proves his variant of Uzawa’s theorem.

4 Discussion

Theorem 1 presupposes the existence of a steady state. The following proposition
reveals that existence requires either a stationary or a strictly growing economy.

Proposition 1 Consider the economy of Theorem 1. A steady-state exists only if gY ≥ 0.

To grasp the intuition behind Proposition 1 suppose a steady state exists and
gY < 0. Then, Part II of Theorem 1 applies, and, in view of (2.4), a steady state
has to satisfy I(t) > c · I(t)φ for all t ≥ τ. However, as I(t) declines at rate
gI = gY < 0 this inequality is violated in finite time, and, afterwards, adjustment
costs will become negative. Obviously, this problem cannot arise in a stationary
or a strictly growing economy.

Theorem 1 applies to a steady state as defined in Definition 1. This definition does
not require adjustment costs to grow at a constant rate. But how do adjustment
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costs evolve in steady state? From (2.5) one readily verifies that the growth rate
of adjustment costs may be expressed as

gAC(t) = gI(t)εAC(t), (4.1)

where

εAC(t) ≡
d ln AC (I(t))

d ln I(t)
=

(1− dΦ (I(t)) /dI(t)) I(t)
I(t)−Φ (I(t))

> 1 (4.2)

is the elasticity of adjustment costs with respect to gross capital investments.
From (2.3) and (2.6) this elasticity is strictly greater than unity for all I(t) ∈ (0, ∞).
The evolution of gAC(t) may the be characterized as follows.

Proposition 2 Consider Theorem 1 with gY ≥ 0. Then, for all t ≥ τ the following
holds.

1. If gY > 0 then ġAC(t) < 0 and limt→∞ gAC(t) = gY.

2. If gY = 0 then gAC(t) = 0.

The explanation is straightforward. If gY > 0, then, gI > 0, and due to dimin-
ishing returns in the installation function of capital, adjustment costs grow faster
than the economy. This follows from Part I of Theorem 1 and equations (4.1)
and (4.2). However, as I(t) increases, εAC(t) declines and approaches unity as
limt→∞ I(t) = ∞. This reflects the tendency that the effect of a growing I(t) on
AC (I(t)) that operates through the installation function of capital peters out as
I(t) gets very large. If gY = 0 then the economy is stationary. Adjustment costs
are also constant over time which is immediate from (4.1) with gI = 0.

Proposition 1 and 2 suggest a link between the role of adjustment costs for the
presence of steady-state capital-augmenting technical change and the definition
of a steady state. To develop this link, let me replace Definition 1 by6

6Arguably, Definition 2 is more consistent with the classical definition of a steady state requir-
ing that in steady state all relevant variables of the model grow at constant rates (see, e. g., Hahn
and Matthews (1964), p. 781). However, whether Definition 1 or Definition 2 is more appropriate
in the present context is most likely a matter of taste.

2868



Economics Bulletin, 2013, Vol. 33 No. 4 pp. 2860-2873

Definition 2 A steady state for the economy of Section 2 is a path along which Y(t),
C(t), K(t), Φ (I(t)), I(t), L(t), and also AC (I(t)) grow at a constant rate for all t ≥
τ ≥ 0.

Proposition 3 Under Definition 2 any steady state satisfying Theorem 1 has gY = 0
and A(t) = e−gL(t−τ). There is no capital-augmenting technical change.

The argument that proves Proposition 3 is simple. By Proposition 1 a steady state
exists only for a strictly growing or a stationary economy. By Proposition 2, if
gY > 0 then gAC(t) is constant only in the limit t → ∞. Hence, a steady state
satisfying Definition 2 cannot start in finite time. This possibility arises only if
gY = gAC = 0. Then, in accordance with Theorem 1, all variables are station-
ary. In particular, the capital-output ratio is constant so that there is no role for
capital-augmenting technical change. Labor-augmenting technical change bal-
ances any growth of the labor endowment to keep L(t)/Y(t) constant. Hence,
the steady-state of Proposition 3 is consistent with the predictions of Uzawa’s
original theorem.

5 Conclusion

This paper shows that capital-augmenting technical change may arise in the steady
state of a neoclassical economy with adjustment costs. This is the case if adjust-
ment costs cause a gap between the evolution of gross capital investments and
of capital so that the former grows strictly faster than the latter. It is then the
role of steady-state capital-augmenting technical change to bridge this gap. This
intuition is captured in a new steady-state growth theorem with adjustment costs.

The discussion of the theorem develops three necessary conditions under which
adjustment costs imply steady-state capital-augmenting technical change. First,
the installation function of capital must exhibit diminishing returns. Second, the
growth rate of the economy must be strictly positive. Third, the definition of the
steady state must allow for adjustment cost to grow at a time-varying rate.
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6 Appendix: Proofs

6.1 Proof of Theorem 1

Observe that Y(t) > C(t) > 0 implies I(t) > 0. Moreover, without loss of generality, let τ = 0.

Part I Given time-invariant growth rates I have I(t) = I(0)egI t, Y(t) = Y(0)egY t, and C(t) =

C(0)egCt. Hence, the resource constraint (2.2) delivers for all t ≥ 0

I(0)egI t = Y(0)egY t − C(0)egCt.

Dividing both sides by egI t gives

I(0) = Y(0)e(gY−gI)t − C(0)e(gC−gI)t.

Differentiation with respect to t delivers

0 = (gY − gI)Y(0)e(gY−gI)t − (gC − gI)C(0)e(gC−gI)t.

The latter can hold for all t if any of the following conditions are satisfied; a) gY = gI = gC, b)
gY = gC and Y(0) = C(0), c) gY = gI and C(0) = 0, and d) gC = gI and Y(0) = 0. Alternatives b)
- d) contradict Y(0) > C(0) > 0. Hence, gY = gC = gI must apply as claimed.

Part II Capital accumulation of (2.7) can be written as

(gK + δK)K(t) = Φ (I(t)) .

Hence, in steady state gK = gΦ. Taking time derivatives delivers

(gK + δK) K̇(t) =
dΦ (I(t))

dI(t)
İ(t).

Dividing the latter by the former gives

gK =
dΦ (I(t))

dI(t)
I(t)

Φ (I(t))
gI .

This can only be satisfied for all t if either gK = gI = 0, or gK 6= 0, gI 6= 0, and

Φ (I(t)) = c · I(t)φ,

where c > 0 is a constant of integration and φ = gK/gI . To satisfy (2.6) it must be that 0 < φ < 1.
Part I delivers gI = gY. Hence, I also have gK = φgY as claimed.

Part III For any t ≥ 0, output at time 0 may be written as

e−gY t ·Y(t) = F̃
[
e−gK t · K(t), e−gLt · L(t), AF(0)

]
.

Multiplying both sides by egY t and using constant returns of F̃ gives

Y(t) = F̃
[
e(gY−gK)t · K(t), e(gY−gL)t · L(t), AF(0)

]
. (6.1)

Then, in light of Part II one either has gK = gY = 0 or gK = φgY 6= 0.
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• If gK = gY = 0 then (6.1) delivers

Y(t) = F̃
[
K(t), e−gLt · L(t), AF(0)

]
.

Since the latter equation is true for all t ≥ 0 and F̃ is linear homogenous in the first two
arguments, there exists a linear homogeneous function F : R2

+ → R+ such that

Y(t) = F
[
K(t), e−gLt · L(t)

]
= F [K(t), A(t)L(t)]

with A(t) = e−gLt ∈ R++.

• If gK = φgY 6= 0 then

Y(t) = F̃
[
egY(1−φ)t · K(t), e(gY−gL)t · L(t), AF(0)

]
.

For the same reason as above, there exists a linear homogeneous function F : R2
+ → R+

such that

Y(t) = F
[
egY(1−φ)t · K(t), e(gY−gL)t · L(t)

]
= Y [B(t)K(t), A(t)L(t)]

with B(t) = egY(1−φ)t ∈ R++ and A(t) = e(gY−gL)t ∈ R++.

From Part II it is immediate that capital per worker grows at rate φgY − gL. In addition, Part
I and constant returns to scale imply that all Y(t)/L(t), C(t)/L(t), and I(t)/L(t) grow at rate
g = gY − gL. �

6.2 Proof of Proposition 1

Let τ = 0 and suppose to the contrary that a steady state exists and gY < 0. Then, from Part I of
Theorem 1 I have I(t) = I(0)egY t > 0. From Part II, Φ (I(t)) = c · I(t)φ, with c > 0 and 0 < φ < 1.
Then, condition (2.4) requires7

I(t) > c
1

1−φ for all t ≥ 0. (6.2)

However, since I(t) declines at a constant rate, there is, for any level I(0) > c1/(1−φ), a critical
period t̃ ∈ (0, ∞) such that I(t) ≤ c1/(1−φ) for all t ≥ t̃. In fact, t̃ satisfies

∞ > t̃ =
(−1)

gY

[
ln I(0)− ln c

1− φ

]
> 0.

If gY = 0 then Φ (I (t)) need not be a power function so that condition (6.2) is replaced by I (0) >
Φ (I (0)) for any permissible installation function of capital. �

7Observe that any level I(t) > 0 that satisfies (6.2) will also satisfy (2.6) requiring 1 >

dΦ (I(t)) /dI(t) = c · φ · I(t)φ−1 for all t ≥ 0.
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6.3 Proof of Proposition 2

1. If gY > 0, then using (4.1), Part I and II of Theorem 1 delivers for all t ≥ τ

gAC(t) = gY

(
I(t)1−φ − φc
I(t)1−φ − c

)
where the term in parenthesis is εAC(t) > 1. As φ ∈ (0, 1), ġAC(t) < 0. Moreover, since I(t)
grows without bound an application of l’Hôpital’s rule delivers that limt→∞ εAC(t) = 1.
Hence, limt→∞ gAC(t) = gY as claimed.

2. If gY = 0, then gI = 0 and the result is immediate from (4.1).

�

6.4 Proof of Proposition 3

To be found in the main text. �
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