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1. Introduction 
The Box-Cox (1964) transformation model (hereafter, the BC model) is widely used 

in various fields of econometrics and statistics. However, since the error terms cannot 
have a normal distribution except in the case where the transformation parameter is zero, 
the likelihood function under the normality assumption (hereafter, the BC likelihood 
function) is misspecified and the maximum likelihood estimator (hereafter, the BC 
MLE) cannot be consistent. Alternative distributions of the error terms and 
transformations for the BC model have been proposed by various authors (for details, 
see Amemiya and Powell (1981), Yeo and Johnson (2000) and Yang (2006)). Because 
the simplicity of the model is lost (Showalter, 1994), these alternatives have not been 
widely used.  In this paper, I propose a new estimator of the Box-Cox transformation 
model. The estimator is a modification of the BC MLE and proved to be consistent. An 
asymptotic distribution was obtained for it. The results of Monte Carlo experiments are 
also presented.   
  

2. Model and Estimator 
  I consider the Box-Cox transformation model 
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where tx and 
 
are k-th dimensional vectors of explanatory variables and the 

coefficients, respectively, and 
 
is the transformation parameter. Random variables

}{ tu  are independent and identically distributed (i.i.d.) and follow a distribution 
whereby the support is bounded from below, the first and third moments are zero, and 
the sixth moment exists and finite (i.e., 0)( uf  if au   for some 0a
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)(uf  is the probability density function, 0)()( 3  tt uEuE , and  6
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We do not have to assume a specific distribution and the model is semiparametric in this 
sense.  }{ tx

 
are i.i.d. random variables with the finite third moment. }{ tu  and }{ tx  

are independently distributed. For the identification of the model, the distribution of tx  
and the parameter space of 

 
are restricted so that 0)1'(inf 000  axx   where 0  

and 0
 
is the true parameter values of   and  , and cxx  )1'(inf 0,   

for some 
0c  in the neighborhood of .0  Unlike the case under the normality assumption, 

0ty
 
under this assumption, and we can obtain a consistent model.  

Powell (1996) proposed a semiparametric estimator based on the generalized method 
of moment (GMM). However, the problems of the estimator are: i) to identify  , we 
need to introduce one or more instrumental variables, tw , which satisfy 0)|( tt wuE  
and are not included in ,tx  and the result of estimation changes depending on the 
selection of instrumental variables, and ii) as pointed out by Khazzoom (1989), when all 
observations are 1ty , the objective function is always minimized at  (or at 

  if 1ty  for all observations), so that rather arbitrary rescaling of ty  is 
necessary. Foster, Tain, and Wei (2001) also proposed a semiparametric estimator. 
However, their estimator has a problem similar to Powell’s second problem. 

Let ),',(' 2  . The BC likelihood function is given by  
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where   is the probability density function of the standard normal distribution and 2
 is the variance of tu . The BC MLE is obtained by  
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is obtained by the approximation of  /log L

 
as shown in Appendix A. 

I consider the roots of the equations, 
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Then, unlike the previous case, the estimator obtained by Equation (5) is consistent and 
we get the following proposition. Note that 0)( TG is equivalent to 0)(  TG  
when .0  
 
Proposition 1 
Among the roots of Equation (5), there exists a consistent root. 
 
The proof is given in Appendix B. Let )ˆ,'ˆ,ˆ('ˆ 2   be the consistent root. The 
asymptotic distribution of ̂

 
is obtained by the following proposition.  

 
Proposition 2 

The asymptotic distribution of ̂
 
is given by 
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Therefore, 0)]([ 0 tE 
 
and ])'()([ 00  ttE   exists.  Since )}({ 0t  

are i.i.d. 

random variables with finite second moments, we get  
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from the multivariate central limit theorem.  

Since all elements of  /  are differentiable,  
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from Theorem 4.1.4 in Amemiya (1985, pp.112-113).  From Theorem 4.1.3 in 

Amemiya (1985, p.111) , the asymptotic distribution of ̂
 
is given by (6).  When 
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Since they are continuous even when 00   by the same argument of Appendix B, we 

can get the asymptotic distribution given by the same formula. Note that matrices A  

and B  can be estimated by 
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3. Monte Carlo Experiments 

In this section some Monte Carlo results are presented for the BC MLE and the newly 
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proposed estimator (hereafter the N-estimator). The model is given by 

ttt uxz  10  , tz  0/)1( 0  ty     (12) 

}{ tx  and }{ tu  are i.i.d. random variables. The following items are considered in the 
Monte Carlo study: 
i) The effect of transformation parameter 0 ;

 
values of 0.8, 0.5 and 0.2 are considered. 

ii) The effect of different distributions of error terms.  
  As the distributions of error terms, the three cases are considered. First, the case 
where tu0  is

 
distributed uniformly on (-1, 1) is considered. Secondly, I consider the 

case where tu0  follows the doubly truncated normal distribution such that )5.0,0( 2N  
is truncated between -1 and 1 so that the support becomes (-1,1). Note that the degree of 
truncation is 4.55% in this case. In the two previous cases, the supports are bounded. 
The behavior of the estimator may be different if this condition is not satisfied. 
Therefore, for the third case, I consider the power transformation of the gamma 
distribution following the suggestion of Hinkley (1975). Let   be a random variable 
which follows the chi-squared distribution with degrees of freedom one, )1(2 . tu0  is 
obtained by 229.0,830.0,/)(0  babbu a

t  . The values of a  and b  are 
chosen so that the first and third moments of tu0  become zero and its support 
becomes ),1(  .  

tx  is
 
distributed uniformly on (0, 2). The true parameter values are: 

 
0.00   and .1.01 

      
 (13) 

 
The sample size is 200 and the number of trials is 1,000 for all cases.  Note that when 
  is given,   and 2  are obtained by the least squares method. The BC MLE and 
the N-estimator were calculated by the following scanning method (Nawata, 1994). 
i) Choose n  ...321  from -1.0 to 2.0 with an interval of 0.01 
ii) Calculate )(ˆ),(ˆ

10 
 
and 2)(ˆ   for each 

 
by the least squares method. 

iii) For BC MLE, choose 
1

ˆ
BC , which maximizes the BC likelihood function. For 

the N-estimator, choose ,ˆ
1N which satisfies 0)()( 1  iTiT GG  where 

).)(ˆ),(ˆ),(ˆ,(' 2
10  ii    

iv) Choose i
 
in the neighborhood of 

1

ˆ
BC and 

1

ˆ
N

 
with an interval of 0.0001 

and repeat the steps (ii) and (iii).  
v) Determine the final estimators. 
For the N-estimator, there are two possible problems. They are: i) Equation (5) has 
multiple solutions, and ii) Equation (5) does not have a solution. Figure 1 is the graph of 

)( iTG   in the trial where the distribution is uniform and 5.00  .The graph is 
monotonically decreasing, and Equation (5) has just one solution. Although it cannot be 
proved that Equation (5) has a unique solution, all trials have just one solution as Figure 
1 and the above problems do not occur in the Monte Carlo experiment. 
  The results are presented in Tables I-III. Note that the following notations are used in 
the tables: STD, standard deviation; Ql, first quartile; and Q3, third quartile. The BC 
MLE underestimates   and has large biases for the uniform case. The biases of the BC 
MLE are fairly large for the doubly truncated normal case even though the degree of the 
truncation is less than 5%. Although the biases are smallest among three distributions, 
some degree of biases are still observed for the power transformation case. The standard 
deviations of the N-estimator are slightly larger than those of the BC MLE, however, the 
biases of the N-estimator are much smaller. The bias almost disappears for all cases.  
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4. Conclusion 
Although the BC model is widely used in various fields, the BC MLE cannot be 

consistent. In this paper, I propose a new estimator of the BC model. The estimator is a 
modification of the BC MLE. The estimator is consistent and its asymptotic distribution 
is also obtained. Moreover, the estimator is easily calculated by the least squares and 
scanning methods. The results of the Monte Carlo experiments show the superiority of 
the proposed estimator over the BC MLE for all cases. However, the performance of the 
estimators may depend on the model. The findings of the study may be different in other 
models. Therefore, further investigation is necessary to determine the superiority of the 
estimators. 

 
Appendix A:  Approximation of  /log L  
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Therefore, if 0)1'/( 0000  tx  for all observations (following Bickel and Doksum 
(1981),  I call “small  ” cases), we get  
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The BC MLE is considered to be a method to make the distribution of the error terms 
close to the normal distribution by the transformation for the small   cases. However, 
normality approximations are impossible for non-small  cases. The proposed 
estimator makes the distributions close to symmetric rather than the normal distribution 
for the non-small   cases and we can obtain a consistent estimator even under those 
conditions. (Hinkley (1975) considered the power transformation to make the 
distributions close to symmetric based on quantiles. However, the method cannot be 
directory applied to a regression type model and a result of the estimation changes 
depending on the selection of quantiles.)  For the small   cases, where the BC MLE 
performs well (for the details of “small   asymptotics,” see Bickel and Doksum 
(1981)), the properties of the proposed estimator are similar to those of the BC MLE 
due to Equation (16). These factors are considered to constitute the superiority of the 
proposed estimator. 
 

Appendix B:  Proof of Proposition 1 
Here, I prove the consistency of the estimator using the mean value and intermediate 

value theorems.  Since 
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are continuous functions of   at 0  from (18), we can treat the 0  case same 
as the 0  case. When   is given,   and 2  are uniquely estimated by the least 
squares method. Let )(ˆ 
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From (16) and (21), we get  
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for any value of 0 .  From (20) and (22), 
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functions of  , )(' h  is continuous in the neighborhood of 0 . Therefore, there exists 
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From (23) and the mean value theorem, for any ),0(   , 
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[P There exists ̂  such that 0)ˆ( Th  and ],[ˆ
00   .] １  (27) 

Since (27) holds for any ),0(   , 0)( Th  has a consistent root of 0 . )ˆ(ˆ 
 
and 

2)ˆ(ˆ   are obtained by the least squares method, they are consistent estimators when 

0
ˆ  P .  Hence there exists a consistent root among the roots of Equation (5). 
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Table I. Uniform distribution, sample size =200. 
    Mean STD Q1 Median Q3 

0 =0.2 

BC MLE   0.145 0.014 0.135 0.144 0.154 

0  -0.267 0.473 -0.608 -0.263 0.083 

1  0.089 0.377 -0.170 0.080 0.351 

N-Estimator   0.200 0.026 0.183 0.197 0.218 

0  0.021 0.465 -0.306 0.022 0.370 

1  0.078 0.362 -0.168 0.072 0.329 

0 =0.5 

BC MLE   0.362 0.037 0.338 0.361 0.387 

0  -0.116 0.186 -0.232 -0.112 0.003 

1  0.105 0.150 0.006 0.110 0.203 

N-Estimator   0.497 0.063 0.452 0.495 0.539 

0  -0.004 0.187 -0.122 -0.001 0.112 

1  0.098 0.145 0.001 0.106 0.195 

0 =0.8 

BC MLE   0.587 0.064 0.544 0.586 0.627 

0  -0.067 0.116 -0.146 -0.068 0.014 

1  0.104 0.090 0.042 0.104 0.164 

N-Estimator   0.801 0.108 0.729 0.792 0.868 

0  0.001 0.119 -0.078 0.000 0.083 

  1  0.098 0.088 0.039 0.096 0.158 

 
 
Table II. Doubly truncated normal distribution, sample size =200. 
    Mean STD Q1 Median Q3 

0 =0.2 

BC MLE   0.175 0.015 0.165 0.176 0.186 

0  -0.048 0.323 -0.267 -0.050 0.168 

1  0.088 0.272 -0.091 0.098 0.275 

N-Estimator   0.201 0.020 0.187 0.201 0.214 

0  0.022 0.323 -0.197 0.016 0.242 

1  0.087 0.269 -0.086 0.096 0.270 

0 =0.5 

BC MLE   0.440 0.042 0.414 0.440 0.468 

0  -0.020 0.135 -0.108 -0.018 0.068 

1  0.094 0.113 0.017 0.095 0.167 

N-Estimator   0.501 0.056 0.465 0.501 0.536 

0  0.007 0.135 -0.084 0.008 0.095 

1  0.093 0.112 0.014 0.093 0.164 

0 =0.8 

BC MLE   0.710 0.068 0.666 0.711 0.753 

0  -0.013 0.081 -0.070 -0.009 0.043 

1  0.100 0.069 0.053 0.097 0.148 

N-Estimator   0.805 0.087 0.748 0.806 0.862 

0  0.003 0.081 -0.054 0.006 0.058 

  1  0.100 0.069 0.053 0.098 0.148 
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Table III. Power transformation of )1(2 , sample size = 200. 

    Mean STD Q1 Median Q3 

0 =0.2 

BC MLE   0.182 0.021 0.167 0.183 0.195 

0  -0.055 0.307 -0.264 -0.060 0.164 

1  0.104 0.249 -0.075 0.102 0.284 

N-Estimator   0.203 0.027 0.184 0.202 0.219 

0  -0.009 0.306 -0.215 -0.015 0.205 

1  0.103 0.248 -0.073 0.104 0.278 

0 =0.5 

BC MLE   0.457 0.055 0.424 0.459 0.491 

0  -0.014 0.115 -0.088 -0.012 0.059 

1  0.097 0.098 0.030 0.095 0.164 

N-Estimator   0.509 0.069 0.463 0.510 0.553 

0  0.004 0.115 -0.068 0.004 0.077 

1  0.097 0.098 0.031 0.095 0.164 

0 =0.8 

BC MLE   0.732 0.091 0.672 0.734 0.792 

0  -0.010 0.074 -0.061 -0.008 0.038 

1  0.100 0.062 0.056 0.099 0.142 

N-Estimator   0.811 0.115 0.735 0.811 0.882 

0  0.000 0.074 -0.051 0.003 0.048 

  1  0.100 0.062 0.056 0.099 0.143 
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Figure 1.  Values of                  (uniform distribution,
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