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1. Introduction 

This study focuses on local academic knowledge transfer, that is, transmission of 
knowledge from universities to firms at sub-national levels.  University to firm knowledge 
transfer has become increasingly important as the share of US basic research done by private 
firms has fallen in recent decades (Scotchmer and Maurer, 2004).  As universities expanded 
their administration of technology transfer efforts following the Bayh-Dole act of 1980, the 
model of public-private research partnership has been increasingly important in fields such as 
medicine, pharmaceuticals, chemicals and electronics.1  While there is extensive micro-
evidence regarding the mechanisms and process of technology transfer (see Mowery, Nelson, 
Sampat and Ziedonis, 2004, for an overview), there are only a handful of studies that quantify 
the aggregate local relationship between academic research and industrial innovation in the 
US.   

The empirical approach of this paper is to model the flow of knowledge as the effect 
of academic research in an innovation production function estimated over some level of 
geographic aggregation.  This approach has previously been employed with data from the US 
by Jaffe (1989), Acs, Audretch and Feldman (1992), Anselin, Varga and Acs (1997, 2000) 
and Agrawal and Cockburn (2003), among others.  More recent work from Europe that finds 
a geographic relationship between university research and industry innovation includes 
Fritsch and Slavtchev (2007), Abramovsky, Harrison and Simpson (2007), D’Este and 
Iammarino (2010), and Muscio, Quaglione and Scarpinato (2012).  Though the estimated 
effect of academic research on private innovation in geographically aggregated studies 
without an experimental or quasi-experimental design cannot be taken as a causal effect, such 
estimates are valuable as descriptive associations that are suggestive of the causal 
mechanisms at work for the transmission of knowledge from universities to industry.  One 
potential channel for transfer is formal technology licensing by university faculty and staff.  
Still, more knowledge is transferred than just what is appropriated by its university 
originators – spillovers of knowledge into the public domain.  To the extent that new 
knowledge is tacit, that is, not able to be completely communicated through writing, 
knowledge transmission will be localized.  An advantage of the geographic production 
function approach, as opposed to studying citation patterns or surveying firms and technology 
managers, is that it does not require precise measurement of every channel, as the end result 
of all knowledge exchange within a geographic area should be evident in greater rates of 
innovation. 

There has been substantial ambiguity in the literature on university-industry 
technology transfer over what constitutes a “spillover” (Breschi and Lissoni, 2001).  This 
ambiguity may have arisen because the use of academic discoveries by industry has more 
facets than the phenomenon of R&D spillovers between firms, which has been more 
extensively studied in economics.  While the primary mechanism for inter-firm spillovers is 
labor-market turnover (Arrow, 1962), academic knowledge transfer occurs through multiple 
channels, some of which are true spillovers, in terms of not being appropriable, and others 
not.  In the case of the patenting and licensing of well-defined innovations, universities and 
faculty are able to appropriate some of the returns to their discoveries, but in other cases 
knowledge flows freely through other channels.2  Survey evidence reported in Cohen, Nelson 
and Walsh (2002) shows that corporate R&D managers more often consider channels such as 
informal interaction, consulting and recent hires to be important to their research activities 
                                                 
1 The Bayh-Dole act gave universities property rights to innovations resulting from Federally-funded research. 
2 An interesting related question is whether protection of intellectual property hinders the free flow of 
knowledge, but this is beyond the scope of this paper.  Murray and Stern (2007) provide convincing evidence 
that it does. 
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than channels such as licenses and contract research.  This is supported by Agrawal and 
Henderson (2002), who reported that MIT faculty rated university patents, licenses and 
research collaboration as less important than consulting and recent graduates in transmitting 
discoveries to industry.  In both surveys, publishing was the most highly regarded channel.  
D’Este and Patel (2007), with a survey of academic researchers in the UK, confirmed that 
consulting and meetings are important channels of knowledge transfer, but also found joint 
research, training and the creation of new physical facilities to be more frequent activities of 
academics than patenting, licensing and starting firms.  Given the scope and frequency of 
these informal channels of knowledge transfer, the proportion of spilled knowledge in total 
commercially valuable knowledge generated by universities is probably high.    

Knowledge spillover has been identified as a factor critical to economic growth (e.g., 
Romer, 1990; Grossman and Helpman, 1991) and also for agglomeration economies and the 
growth of cities (Glaeser, Kallal, Scheinkman and Schleifer, 1992).  The localization of 
knowledge spillover has become an important policy concern for the U.S. as international 
competitiveness has moved alongside national security as reasons for the federal support of 
R&D (Freeman and Van Reenen, 2009).  However, there is evidence that the tendency of 
inventors to cite patents produced within their own country more frequently and quickly than 
those from abroad has been declining since 1990 (Griffith, Lee and Van Reenen, 2011). 

A comparison of the studies that investigate academic knowledge transfer with 
geographic innovation production functions reveals the strengths and weaknesses of their 
approaches.  The pioneering study was Jaffe (1989), which made use of panel data on 29 U.S. 
states over 1972-77, 1979 and 1981.  Using a three stage least squares instrumental variable 
approach, he estimated a direct elasticity of corporate patents with respect to academic R&D 
of 0.1.3 The interquartile elasticities for the areas of Drugs, Chemicals and Electronics ranged 
between 0.08 and 0.30.  Anselin et al (1997) used a cross-sectional dataset covering 125 U.S. 
metropolitan areas in 1982.  They used a count of innovations identified by the U.S. Small 
Business Administration.  In their most completely specified model the estimated elasticity of 
innovations with respect to academic R&D was 0.093, which was remarkably close to Jaffe’s 
finding.  Further, they find a weaker but still statistically significant effect of university 
research conducted in counties adjacent to metropolitan areas, suggesting the effects of 
university research weaken with distance from the center of a metropolitan area.  Their 
follow-on study (Anselin et al, 2000) revealed that the effect of academic R&D is substantial 
for certain technical areas only, such as electronics and instruments.  Agrawal and Cockburn 
(2003) examine the correlation between academic publishing and private-sector patenting 
across US and Canadian metropolitan areas over the period 1991-1997, for three narrow sub-
fields of electrical engineering.  They found strong positive correlations and a high degree of 
geographic co-location, after controlling for employment in professional, scientific and 
technical occupations.  Further, the presence of an “anchor tenant”, a firm performing a large 
amount of internal R&D, was found to greatly increase such correlation.  Fritsch and 
Slavtchev (2007) use a panel that covers patenting in German districts over 1995-2000;  in 
their model specifications they find elasticities of private sector patent applications with 
respect to externally-sourced academic R&D of 0.017 – 0.035. 

Many other studies have been conducted on local academic knowledge spillovers in 
Europe, see Fritsch and Slavtchev (2007) for a review.  Several recent ones stand out due to 
the novelty of their methods.  Abramovsky et al (2007) found that R&D conducting 
establishments tended to locate close to high-quality research departments, at the postal-code 
level in the UK.  D’Este and Iammarino (2010) found that the frequency of collaboration by 

                                                 
3 Taking into account that academic R&D may induce firms to locate R&D activities near universities, the total 
indirect effect was a much larger elasticity of 0.6. 
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engineering faculty in the UK decreases with the distance to the collaborating firm; also that 
the frequency of collaboration is positively related to the research quality score of a faculty 
member’s department.  With Italian data, Muscio et al (2012) found that proximity to 
industrial districts strengthened the level of private R&D funding that academic departments 
received, after controlling for other relevant factors.   

Of the US studies only Jaffe (1989) makes use of panel data, but not at the 
metropolitan level.  Only Agrawal and Cockburn (2003) use publications as a measure of 
academic knowledge, and not for all areas of science and technology.  The present study is 
able to shed more light on the empirical question of academic knowledge transfer in the US 
due to its broad coverage (described in the next section) and its use of academic outputs as 
measures of knowledge. 
 

2.  Empirical Method and Data 
 

  The empirical models employed here are of geographic innovation production 
functions in the style of Pakes and Griliches (1984) and Jaffe (1989), where corporate 
innovation is a function of corporate R&D and an academic input.  Observations are taken on 
metropolitan areas (i) in years (t).  Due to the discrete count nature of patent data, negative 
binomial models of the following form are estimated: 

 
  𝐼𝑖,𝑡 = 𝑒(𝛽0+𝛽1𝑘𝑖,𝑡+𝑿𝑖,𝑡

′ 𝜑+𝜶𝑖+𝜼𝑡) + 𝜀𝑖,𝑡     (1) 
 

Here, I represents private-sector product or component innovation, k is a measure of 
academic knowledge, and X is a vector of time-varying control variables, such as corporate 
R&D and scientific employment.  Since the primary measure of I is a count of patents 
accumulated over time, I is assumed to have a Poisson distribution.  Metropolitan-area 
indicators, 𝜶𝒊 , are included in some specifications to control for other time-invariant 
characteristics of metropolitan areas.  Year effects, 𝜼𝒕 , are included in all specifications to 
control for annual variation in the number of patents.  In most specifications log-
transformations of the regressors are used.  Error terms are clustered by metropolitan area for 
estimates of equation (1), which accounts for correlation in patenting over time within 
metropolitan areas.   

Model (1) controls for time-invariant factors but is not a fixed-effect negative 
binomial model, as originally described by Hausmann, Hall and Griliches (1984).  
Conditional fixed-effect negative binomial models of the following form were also estimated: 

 
𝐼𝑖,𝑡 = [𝑒(𝛽0+𝛽1𝑘𝑖,𝑡+𝑿𝑖,𝑡

′ 𝜑+𝜼𝑡)]𝜶𝑖 + 𝜀𝑖,𝑡      (2) 
 
This model allows the variance of the underlying Poisson dispersion parameter to 

differ across metropolitan-area groups.  A drawback when estimating this model, however, 
was that it was not possible to cluster the error terms.   

Data for a panel covering 105 U.S. metropolitan areas and spanning 1977 to 1999 
were collected from several different sources.  The main dependent variable, I, is measured as 
the count of patents assigned to U.S. corporations in the year that their application was filed.  
Data on patent counts was obtained from the National Bureau of Economic Research (NBER) 
patent dataset, as detailed in Hall, Jaffe and Trajtenberg (2001).  Patents assigned to US 
businesses and indicating a US residence of the first inventor were used; I assigned them 
geographically by the county of the city of the first inventor, the counties being assigned 
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uniquely to metropolitan areas.  Any patents in counties outside of included metropolitan 
areas were ignored. 

Patents can be problematic as a measure of innovation because they vary widely in 
their value.  For example, Scherer and Harhoff (2000) found that the percent of value in the 
top 10% of patents ranged between 81-85% in different samples of U.S. and German patents.  
In the present analysis, with a sample mean of 258 patents per observation, there are likely to 
be valuable patents in most metropolitan areas.  However, it is unknown whether the 
measured increase in patents related to academic research is in high-value patents.  In some 
specifications an alternative measure of innovation was used: the patent citation rate.  This 
measure was the average number of citations to the patents generated in a particular 
metropolitan area and year and was available in the NBER patent dataset.  Use of this 
measure required shortening the panel as it would have been truncated in the latter third of 
the panel due to the long lag (8 years, on average) between patent application date and 
citation by other patents. 

Publication counts, and the counts of the number of citations that these articles 
received from other publications, serve as measures of the scientific knowledge variable, k.  
These I collected for 218 U.S. research universities and medical schools, 98 non-profit 
research institutes and 5 federally funded research and development centers.4  This set of 
institutions included those that received at least $10 million in federal research grants in 
2003.  Publications outside the natural sciences and engineering were not included. 

While the effects of academic research are of primary interest here, most research and 
development activity in the U.S. (75%) is performed by private firms (Scotchmer and 
Maurer, 2004).  However, the location and quantity of private R&D is largely kept secret for 
strategic reasons, so direct controls for private R&D at the metropolitan area level are not 
available.  I created an approximate measure of private R&D from two sources: the Survey of 
Industrial Research and Development (SIRD) from the National Science Foundation (NSF), 
and the Census Bureau’s County Business Patterns (CBP).  The SIRD provided state-level 
figures for private R&D, however in many cases state totals were suppressed.  For these, I 
imputed the values by allocating the difference between the total R&D reported for a region 
and the R&D reported for states within that region to the suppressed observations based on 
the share of population of the suppressed states.  The CBP provided total payroll earnings for 
each county, which were aggregated to metropolitan areas by counties.  Each state’s R&D 
was apportioned to the metro areas within each state based on each metro area’s share of its 
state’s payroll earnings to create the control variable Industry R&D. This variable is 
undoubtedly measured with error, since state R&D totals are distributed by the size of each 
metropolitan area’s economy, without regard to its R&D intensity.  However, using it is 
better than simply not controlling for industry R&D.  The CBP also recorded employment in 
scientific and engineering services, which was aggregated to the metro level to create another 
control variable for industrial R&D activity.  These two controls have a correlation of 0.61.  
In the following analysis the two-year moving average of each variable, using the current 
year and a one-year lag, was generally used, to account for the possibility of a lag time 
between the innovation inputs and the time of patent application.5           

Only metropolitan areas with least one of the universities or research institutes for 
which publication data was collected were included in the sample.  I used the Census 
Bureau’s 2002 definition of Metropolitan Statistical Areas (MSA) to define metropolitan 
areas, but in some cases used Core-Based Statistical Areas (CBSA), which consist of several 
                                                 
4 All articles authored by faculty of those institutions were obtained from automated searches on the Thompson 
ISI Web of Science in 2006, using a Perl script written by a research assistant. Further details regarding the 
construction of the panel are available upon request from the author. 
5 The results were not sensitive to the choice of lag. 
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contiguous Metropolitan Statistical Areas.6 Using CBSA instead of MSA for large 
metropolitan areas is intended to capture knowledge spillover within an observation, under 
the assumption that people tend to interact more often with others in the same greater 
metropolitan areas.  Table I provides summary statistics for the variables in the main 
metropolitan/year panel. As can be seen by comparing the medians and means in Table I, all 
of the variables have distributions that are right-skewed: much innovative activity is 
concentrated in a minority of metropolitan areas. 

 
Table I: Sample statistics - Panel with 2146 metropolitan area/year observations 
Variable Mean Median Min. Max. Source 
Corporate patents 258.1 55.0 0.0 8934.0 NBER 
Academic publications 1464.4 751.0 0.0 18127.0 Web of Science 
Citations to academic pubs. 48057.3 18042.0 0.0 775727.0 Web of Science 
Employment in scientific 
services 6250.4 2079.0 10.0 101582.0 Census CBP 
Estimate of private R&D, $m 240.5 51.7 0.0 9345.3 NSF & CBP 

 
3. Results 

 
Regression estimates of models fitting metropolitan-level counts of patents with 

measures of academic knowledge, private R&D, and year effects are shown in Table II.  Each 
of these regressions fits a Negative Binomial model by Maximum Likelihood estimation.7 In 
using the log of the two-year moving average of each of the regressors I dropped 
observations for which the two-year moving average of any variable was zero valued, 
resulting in the panel of 2,146 observations.  The elasticity of private-sector patents to 
university publications estimated in the first model, column (1), is 0.31.  It could be biased 
upwards from omission of controls for metropolitan size and employment density, the latter 
of which was found to be a critical determinant of patenting by Carlino, Chatterjee and Hunt, 
(2007).  With the inclusion of metro indicators in column (2), the estimated elasticity is 0.10. 
This effect is marginally statistically significant; against a one-sided alternative hypothesis, it 
is statistically significant at under 10%.8   The control variables have robust effects as should 
be expected: the elasticity of patents with respect to corporate R&D is 0.16 and with respect 
to employment in scientific services is 0.24.  An alternative specification in column (3) shows 
estimates of the conditional fixed-effects model.  The estimated elasticity of patents with 
respect to publications was also 0.10, indistinguishable from the model with metropolitan-
area indicators.  

The model was then re-estimated using publication citation counts instead of 
publication counts.  In columns (4) and (5) I find their effect to be lower: an elasticity of 0.24 
in column (4), but only 0.055 with metro fixed-effects in column (5), which is 
indistinguishable from zero.  Again the elasticity estimated with the conditional fixed-effects 
model in column (6) was nearly the same, at 0.056, and statistically significant owing to the 
independently distributed errors.  It is interesting that the effect of citations is lower than that 

                                                 
6 In a few cases, I modified the official MSA or CBSA to include neighboring counties or MSA, if such counties 
had a population center and were not part of another MSA or CBSA. 
7 Use of the Negative Binomial instead of the Poisson is appropriate when the data have an overdispersed 
Poisson distribution.  Likelihood-ratio test statistic values on the over-dispersion parameter, obtained for models 
(1) and (2) of Table II, were significant at the 1% level, indicating over-dispersion.  Refer to Gutierrez, Carter 
and Drukker (2001) for details on the modified likelihood-ratio test appropriate in this context.  
8 This result is obtained with error terms clustered by metropolitan area.  Under the classical assumption of 
independently and identically distributed errors, the p-value for the usual two-sided test is 0.005.  
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of publications.  It could be that the citation count, a quality measure, is not related to the 
number of patents, but more highly correlated with the quality of those patents.   
 
Table II: Negative Binomial regressions of patents on academic publications, controls. 

Dependent variable: patents   (1) (2) (3) (4) (5) (6) 

log(publications) 0.3053*** 0.1035 0.1028***             
  (0.0770) (0.0752) (0.0260)             
  

log(pub. citations) 
   

0.2409*** 0.0551 0.0558***  

   
(0.0678) (0.0591) (0.0194)   

log(R&D spending) 0.3934*** 0.1612*** 0.1833*** 0.3794*** 0.1634*** 0.1828***  
(0.0865) (0.0483) (0.0178) (0.0878) (0.0484) (0.0178)   

log(sci. employment) 0.4504*** 0.2408*** 0.1581*** 0.4649*** 0.2453*** 0.1705***  
(0.0958) (0.0847) (0.0261) (0.0956) (0.0840) (0.0260)   

Constant -2.4908*** 0.0835 0.0789 -2.8267*** 0.1197 0.1429    
(0.5578) (0.7914) (0.2167) (0.6357) (0.8473) (0.2232)   

Log-likelihood -11,567.92 -9,448.54 -8,879.79 -11,574.98 -9,450.51 -8,883.78  
Metropolitan dummy variables? N Y N N Y N 
Conditional fixed-effects model? N N Y N N Y 
Error terms clustered by metro? Y Y N Y Y N 
n = 2,146 2,146 2,146 2,146 2,146 2,146    
* significant at 10%, ** significant at 5%, *** significant at 1% 
Standard errors in parentheses 

      All regressions include year effects. 
      All regressors are two-year moving averages. 

      
It is possible that the effect of academic research on private patenting may have been 

changing over the 22 year span of the panel.  Industry’s share of federal R&D funding was 
falling in the 1990s while the share to universities was rising, according to Scotchmer and 
Maurer (2004, fig. 8.3).  In Table III the models are re-estimated with the inclusion of a 
variable for the interaction between an indicator for late-sample years (1994-1999) and the 
two-year moving average of log(publications) or log(pub citations).  From the estimated 
coefficients of these variables the elasticities appear to strengthen modestly in the latter 
sample, by 0.02 to 0.025, but whether the effect strengthened at all depends on the choice of 
model; when clustered errors are used, no significant difference is observed.       

Also interesting is the question of whether the quality of private-sector patents was 
determined by the volume of academic research.  I created a proxy variable for the quality of 
patents, patent citations per patent, using information on the number of patents citing each 
private sector patent from the NBER patent dataset.  Negative binomial regressions of this 
variable would not converge, however, so double-log models were estimated by Ordinary 
Least Squares instead.  Since the available patent data ended in 2001 and there is a 
considerable lag between when patents are applied for and when they are cited by other 
patents, the sample is limited to 1977-1994.  These estimates are shown in Table IV.  
Although there is a measurable effect of the volume of academic papers on the patent citation 
rate in column (1), this is knocked out by the inclusion of metropolitan-area fixed effects in 
column (2).  Similar results are found using publication citations in columns (3) and (4).  It 
appears from this analysis that neither the volume of academic research nor the degree of 
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academic citation has an aggregate effect on the forward citation rate of private-sector 
patents. 
 
Table III: Negative Binomial regressions with late-sample interaction 
Dependent variable: patents 

 Variable (1) (2) (3) (4) 

log(publications) 0.1131 0.1023***    
 (0.0753) (0.0259)    
 

1994-99 indicator * log(publications) 0.0250 0.0205**    
 (0.0394) (0.0104)    
 

log(R&D spending) 0.1574*** 0.1795*** 0.1587*** 0.1778***  
(0.0463) (0.0178) (0.0469) (0.0178)   

log(sci. employment) 0.2419*** 0.1587*** 0.2476*** 0.1716***  
(0.0842) (0.0261) (0.0832) (0.0260)   

log(pub. citations)   
0.0614 0.0545***  

  
(0.0589) (0.0194)   

1994-99 indicator * log(pub. citations)   
0.0250 0.0201**   

  
(0.0307) (0.0084)   

Constant -0.1166 -0.0564 -0.1624 -0.0402   
(0.8531) (0.2278) (0.8998) (0.2368)   

Metropolitan dummy variables? Y N Y N 
Conditional fixed-effects model? N Y N Y 
Error terms clustered by metro? Y N Y N 
Log-likelihood -9,446.90 -8,877.85 -9,448.00 -8,880.92  
n = 2,146 2,146 2,146 2,146    
* significant at 10%, ** significant at 5%, *** significant at 1% 

Standard errors in parentheses 
    All regressions include year effects. 
    All regressors are two-year moving averages. 
     

4. Conclusions and Avenues for Future Research 
  

The economic and social benefits of research in science and engineering have been 
increasingly scrutinized in the past decade.  For example, the National Science Foundation 
initiated the Science of Science and Innovation Policy (SciSIP) program in 2005 to encourage 
the study of the innovation impacts of science.  Since 1980, most research universities have 
established offices of technology transfer and are engaged in licensing university inventions 
to and partnering with private firms.  Yet only a handful of studies have looked at the 
geographically localized aggregate effects of academic research in the U.S.  This study is the 
first to use panel data covering all U.S metropolitan areas that have a substantial academic 
research presence and the first to extend for more than two decades.  It is also the first panel 
study to make use of publications as a measure of academic research instead of academic 
R&D spending, an input. 
 Despite the differences in empirical approach, the scale of the effect of academic 
research on private-sector patenting estimated here is very similar to the aggregate effects 
measured by the prior studies of Jaffe (1989), Anselin et al (1997) and Agrawal and 
Cockburn (2003).  Further, there is some evidence, although it depends on the choice of 
modeling assumptions, that the spillover effect strengthened in the 1990s.  This is entirely 

1475



Economics Bulletin, 2013, Vol. 33 No. 2 pp. 1468-1478

 
 

consistent with the increase in university technology transfer efforts that were occurring at 
the time and the growing encouragement of faculty to be engaged in consulting and start-up 
activity.  It may also have reflected a decline in basic research conducted by private-sector 
labs. 
 
Table IV: OLS Regressions of patent citation rate. 
Dependent variable: log(pat. cites/patent)) 
  (1) (2) (3) (4) 

log(publications) 0.0772*** -0.0385 
  (0.0226) (0.0888) 
  

log(pub. citations)   
0.0697*** -0.0783 

  
(0.0182) (0.0602) 

log(R&D spending) 0.0200 0.0429 0.0160 0.0469 
(0.0217) (0.0341) (0.0211) (0.0339) 

log(sci. employment) 0.0139 0.0377 0.0118 0.0430 
(0.0309) (0.0669) (0.0308) (0.0679) 

Constant 1.4696*** 1.2115*** 1.3249*** 1.4953*** 
(0.2083) (0.4160) (0.2153) (0.4487) 

Metro fixed effects? N Y N Y 
R-squared 0.17 0.41 0.18 0.41 
n = 1,702 1,702 1,702 1,702 
* significant at 10%, ** significant at 5%, *** significant at 1% 

Errors clustered by metropolitan area 
    Robust standard errors in parentheses. 
     

Increases in patenting do not imply increases in valuable innovations, however.  It 
may have been that the marginal patents represented ideas and inventions that never made it 
to the market, or had little impact if they did.  The analysis of the patent citation rate done 
here supports this view.  No connection was found between the volume of academic research 
and the impact of private patents on subsequent patenting.  However, the panel I used for that 
analysis ended in 1994.  It is possible that more recent data may uncover a relationship 
between academic research and the rate that patents are cited by other patents. 
 Also of interest is whether geographically localized aggregate knowledge spillovers 
strengthened into the 2000s.  Extending the panel used in this study to the present is not 
possible, but extension to 2011 may soon be possible.  The Patent Data Project of the 
National Bureau of Economic Research has made U.S. patent data available in a usable form 
through 2006.  Data on publications indexed by Web of Knowledge are obtainable to the 
present.  Private R&D and employment in scientific services data are publicly available, 
although as of this writing, have only been compiled in usable form to 1999 by this author. 
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