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1. Introduction 

 

According to Balestra and Nerlove (1966), most panel data studies use a random error 

component specification to model the disturbances found in regression equations. Efforts to 

account for individual and time-specific effects from a random errors perspective led authors 

like Wallace and Hussain (1969), Nerlove (1971) and Amemiya (1971) to develop the two-

way errors component model.  

 

The classical error component models, either the one way or two way models, assume equi-

correlation among the compound errors (see Baltagi, 2005). It is evident that, most economic 

relationships, especially behavioral functions like investment or consumption, cannot 

accommodate such a restrictive assumption, knowing that an unobserved shock this period 

can affect the investor’s or consumer’s decisions for at least the next few periods. Therefore 

time-varying disturbances may contain their own correlation patterns, spreading shocks in the 

overall regression equation. As a result, the equi-correlation assumption is no longer justified. 

Ignoring such serial correlation when it is present, results in consistent but inefficient 

estimates of the regression coefficients and biased standard errors (see Greene, 2003).  

 

MacDonald and MacKinnon (1985) argued that the autoregressive (AR(p)) specification is 

more popular than the MA(q) specification in empirical applications, not because it is more 

plausible, but rather because it is easier to compute (see Baltagi and Li, 1994). In this 

perspective, Baltagi and Li (1991, 1992)
1
 obtained a simple transformation that changes the 

autoregressive error component disturbances into spherical disturbances. They show how this 

transformation can be applied when there is some remaining disturbances in the one way 

model, follow an AR(1), AR(2), or a special AR(4) process for quarterly data. The last one is 

the subject of our interest. The two-way error component model with serially correlated error 

terms is considered by Revankar (1979) and Karlsson and Skoglund (2004). However, in 

their model, only the time-varying disturbance is assumed to be serially correlated, following 

an AR(1) process.  

 

Brou et al. (2011) also consider a similar model, with an autocorrelation (AR(1)) in the time 

specific effect and in the remainder error term. Therefore, the contribution of this paper is to 

handle the double autocorrelation for the special AR(4) that allows both time-varying 

disturbances of the compound error to be serially correlated, but each independently 

following a particular AR(4) process. This type of autoregressive process is chosen because 

of its relevance for many quarterly data encountered in finance and business cycles analysis.  

 

The remainder of the paper proceeds as follows. In Section 2, we consider simple structures 

of the disturbances following a particular AR (4) process for quarterly data. In section 3, we 

explain the structure of the variance-covariance matrix of the transformed error terms and its 

spectral decomposition. Section 4 presents the GLS transformations of the original data 

aimed at correcting for the serial correlation in the particular context of the two-way 

structure. Section 5 derives estimations of the correlation parameter   and the BQU 

estimates of the variances. Some final remarks are given in section 6.  

 

 

 

                                                 
1
 Baltagi and Li (1991, 1992) treat the one-way error component model by considering the presence of serial 

autocorrelation in the genuine error term. 
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2. Specification and Assumptions of the Model 

 

First, we present the formulas for a particular AR(4) process for quarterly data
2
. Second, we 

assume that both the remaining disturbances itv and time effect t  follow this particular 

process. 

 

2.1. The AR (4) process for quarterly data 

 

Consider the following two way error component model (see Baltagi, 2005),  

 ' , 1, , ; 1, ,it it ity X u i N t T             (1) 

where   is the intercept and   is a k x 1 vector of slope coefficients, i, denote individuals 

and t, time periods.  

 , 1, , ; 1, ,it i t itu i N t T              (2) 

 

Quarterly data process for double autocorrelation with time-varying disturbances is expressed 

as: 

  4t t t     , 1  ,  20,t IIN  
                  (3)

 

, 4it v i t ite     , 1v  ,  20,it ee IIN    

 

The individual-specific effect is assumed to be spherical, that is,  20,i IIN   , and s are 

hypothesized as being different for each time-varying disturbances as in Brou et al. (2011). 

However, in this study, the s  can be assumed to be the same. 

 

2.2. Assumptions of the Model of our interest 
 

Unlike other studies, we assume that both time-varying disturbances exhibit the same 

autocorrelation scheme, i.e. the same  measures the serial correlation ( v      ). In this 

case the time varying errors become: , 4it i t ite    , 1  ,  20,it ee IIN   for the 

remaining error term and 4t t t    ,  20,t IIN   for the time specific effect. 

 

The restriction on 
 
is due to the difficulty to transform the quarterly data into Moving 

Average (MA) process. This transformation allows the use of Pesaran (1973) orthogonal 

matrix and easies the handling of the double autocorrelation (see Brou et al., 2011). 

 

We also assume for the double quarterly autocorrelation model that is , s  and s  are 

pairwise independent. Likewise, s  and es  are also independent. Moreover, we assume 

that ( , ) 0, ,it jtCov t i j      , stating that the correlation in the remaining disturbance is not 

spread among contemporaneous individuals. For convergence purpose and under the 

                                                 
2
 Thomas and Wallis (1971) are among the first authors who suggested a particular AR (4) process. They argue 

that when quarterly data are used, a fourth-order process may be appropriate. However, instead of a general 

fourth-order process, they suggest that only the disturbances in corresponding quarters of each year should be 

correlated. 
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stationarity assumption, the initial values are defined as 
2 2

2 2

0 02 2
0, 0,

1 1

e
i N and N 

 

 
   

 

   
    

    
.   

 

In vector form,     T Nu i i      N TI I                               (4) 

where Ti  and Ni  are vectors of one’s of dimension T and N respectively, NI  and TI are 

identity matrices of dimension N and T respectively.  
'

1, , N   ,  
'

1, , T    and 

 
'

11 1 1, , , , , ,T N NT     , respectively. Thus, u  has mean zero and variance-

covariance matrix  

      ' 2 ' '

T T N NE uu i i i i     ν N λΣ Σ I Σ ,                 (5) 

where,  

 

   
 

 
   

λλ ΓΣ
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
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
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





 
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































T

T

λλE               (6a) 

and 
νΣ  is defined as follows  

   

     

     
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   

      

      
       
         
    
    

        

νΣ      with  

   

     

     
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     
    
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 
    
    
      
    
          

 

that is,   

   

 

 

   

2 2

1 1 1

1 1
1, , .

1

1 1 1

i i

T

E i N

T

 


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

 

 


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

 

 
 
     
 
   

νΓ   

and  i jE i j    0  since   0 , , .it jsE for i j t s       

Consequently,  2 2

  

 
 
   
 
 
 

ν

ν

ν N ν

ν

Γ 0 0

0 Γ 0
Σ I Γ

0 0 Γ

.                (6b) 

In this paper, we assume that t  and itv  exhibit the same autocorrelation scheme, as that of a 

special AR (4) process for quarterly data,     1,,1  Thhh   .  

Therefore, ΓΓΓ νλ  .   
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From 4t t t    and , 4it i t ite    ,we obtain    
4

if isan integer
4

0 otherwise.

h h

h h 


 




  



  

Hence, 

 1 4

2 1 1

0 0

1
if isan integer

1,0,0,0, ,0,0,0, ,0, , where 4

0 otherwise.

T

T T

T

Toeplitz
 

 
 



 


  

   
  



Γ (7) 

The correlation coefficient is now:  
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for , .i j t s











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


  

Unlike the classical assumption, we may note that, the correlation coefficient actually 

depends on the time length
4

st 
. This confirms the assumption that, omitted or unobserved 

variables can affect dependent variables at least within the next few periods.  

 

3. Variance-Covariance of the Transformed Errors and Its Spectral Decomposition 

 

When the time-varying disturbances terms follow a special AR(4) process for quarterly data, 

the transformation used to correct for the autocorrelation can be defined, as in Baltagi (2005), 

by: 

* 2

*

, 4

1 for 1,2,3,4

5,6, , .

it it

it it i t

u u t

u u u for t T



 

  

  
 

The corresponding Prais-Winsten transformation matrix is therefore  

2

2

2

2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1















 
 
 
 
 
 
 
 

 
 
 
 
  

C                 (8) 

 

The variance-covariance matrix of the transformed errors is,  

   

       2 ' '    = .T T N Ni i i i

   

    

* '

N N

' ' '

N ν N λ

Σ I C I C

I CΣ C I C C CΣ C
                (9) 
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Following Baltagi and Li (1991), we set  '

4, , , ,T Ti i       where  (1 ) 1     , and 

  
'

T Ti i α

TJ , '

N Ni iNJ . We then obtain,  
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              (10) 

Therefore,         
22 2 21e


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In order to get idempotent matrices, we make the following transformation: 
'

2
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
α

TJ , 

'

N Ni i

N
NJ  where 2 ' 24 4T Td i i T      . We then use Wansbeek and Kapteyn (1982, 1983) 

approach, in the expression of *Σ , that is
NI  is replaced by NNE + J  where NN NE = I - J ; 
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α

tJ ; and 
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α
α
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α
α
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The spectral decomposition of 
*Σ  is  
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4. GLS Transformation 
 

However, at this step, the overall disturbances u* is still not spherical. This issue can be 

overcome by a GLS approach. Following Fuller and Battese (1974), where the new 

transformation matrix could be 1 2

e
*

Σ .  From the spectral decomposition of 
*Σ , it follows 

that: 
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Premultiplying the Prais-Winsten transformed observations  *y y NI C  by 1 2
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as defined by Baltagi (2005). The ib s are weighted averages of Prais-Winsten transformed 

observations with a special weight 
2d


 to the first four observations.  

 

Likewise the one-way AR(1), AR(2) and AR(4) serially correlated error component model 

(see Baltagi, 2005), the estimation of the two-way model can be done through two steps: (i) 

firstly, by applying the Prais-Winsten transformation as it is usually done in the time-series 

literature, and (ii) lastly by subtracting a pseudo-average from these transformed data.  

 

This procedure can be reduced to a one-step one, since y  can be directly expressed in terms 

of y  as  yy e CIN 
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where the ib s are now seen as weighted average of the original observations:  
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After the transformation of the model, one can seek Best Quadratic Unbiased Estimates 

(BQUE) and parameters estimates.  

 

5. BQU Estimates and Parameters Estimation 

 

To get the BQU estimates of the variance components; *  being the variance-covariance 

matrix of the model, by applying Balestra (1973) results and from the spectral decomposition, 

we obtain,  
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*' *

ˆ
( )

i

u u

trace
  i

i

Q

Q
, for all i.  

Thus, 

 
  

 
 

 
 

 

*' *

2

*' *

2 2 2 2

*' *

2 2

*' *

2 2 2 2 2

2

ˆ
1 1

ˆ ˆˆ ˆ(1 )
1

ˆ ˆ
1

ˆ ˆˆ ˆ ˆ(1 ) .
1

e

e

e

e

u u

N T

u u
d

N

u u
N

T

u u
d N





 



  

 

   

 
 

 



   



 

 





    


α

N T

α

TN

α
N T

α

N T

E E

E J

J E

J J

                 (20) 

From a practical point of view, we face several unknown parameters: 

2 3, , , , , ,e e        and 4 . We first need an estimate of the AR (4) parameter  . 

Following Baltagi and Li (1997) recommendation in the one-way serially correlated model, 

an estimator of   based on the autocovariance function  ,s it i t sq E u u   will be derived.  
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From ittiit vu   , ittiit evv  4,  and ttt   4 ; we obtain:  

 
 42 2 2

,
2

if : 4

otherwise

t s

s it i t s

k t k s
q E u u

  



   







      
  



  

One deduces: 

       2 2 2 2 2 2 2 2

0 1 , 1 4 , 1; .it it i t it i tq E u q E u u and q E u u                       
 

Hence, 4 1

0 1

q q

q q






. We get an estimator ̂  as 4 1

0 1

ˆ
q q

q q






 , where 

 
 





N

i

T

st

sitits uu
sTN

q
1 1

ˆˆ
1~ and itû  denote the OLS residuals of model (4).  

 

One can obtain feasible estimates of the variance components by replacing, in (20), the true 

disturbances *u  by OLS residuals, as suggested by Wallace and Hussain (1969), or by the 

within-residuals (Amemiya 1971). Although OLS estimates are unbiased, they are 

asymptotically inefficient with biased standard errors (Amemiya, 1971). In contrast, the 

within-estimators are unbiased and asymptotically efficient, as any feasible GLS estimators 

(see Baltagi, 2005 and Prucha, 1984). Since the Within-regression uses only part of the 

available data, Swamy and Arora (1972) suggest a feasible GLS estimator in three steps.  

 

Following Swamy and Arora (1972), we suggest running three least squares regressions by 

transforming the data by some Qi’s matrices. The first one consists in transforming the Prais-

Winsten data by   α

1 N TQ E E . It yields an estimate of 2

e :  

    
1

2 *' * *' * *' * *' *

1 1 1 1 1
ˆ ˆˆ ˆ 1 1e y Q y y Q X X Q X X Q y N T K 

          
             (21) 

 

The second regression transforms the Prais-Winsten data by  
α

T2 N
Q E J  and estimate 2 , 

as:    
1

*' * *' * *' * *' *

2 2 2 2 2
ˆ̂ 1y Q y y Q X X Q X X Q y N K

        
                         (22) 

With      2 2 2 2 2

2 2
ˆ ˆˆ ˆ ˆˆˆ ˆ ˆ ˆˆ ˆ ˆ(1 )e ed f           

 
 and  

 
 

2ˆ4 1
ˆ ˆ4 1

ˆ1
f T


 



 
    

 
. 

Hence,       TTTf   ˆ42ˆ8ˆ 2 .  

 

The third regression uses   α
N3 TQ J E  to obtain an estimate of 2 2

3 e N     , expressed as 

   
1

*' * *' * *' * *' *

3 3 3 3 3
ˆ̂ 1y Q y y Q X X Q X X Q y T K

        
                          (23)  

and  2 2

3
ˆˆ ˆˆˆ ˆ

e N                       (24) 

The parameter 4
ˆ̂  is then deduced as  2 2 2

4
ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ

e f N                      (25) 

 

We are now able to deduce estimates of the is  as they appear in equations (15). We then 

implement the GLS procedure to get the estimated coefficients and complete the estimation 

of our two-way serially correlated AR (4) error component model for quarterly data.  

 

 

 

632



Economics Bulletin, 2013, Vol. 33 No. 1 pp. 625-634

 

6. Final Remarks 

  

This paper investigated the issue of serial correlation in a two-way random effect model, 

when all time-varying components of the error term exhibit the same serial correlation of a 

special AR(4) type. Through the spectral decomposition of the variance-covariance matrix of 

the transformed errors, a feasible GLS estimation procedure was suggested, with clear 

estimates of all parameters involved in its implementation.  
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