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1. Introduction

Congestion games provide a natural framework for a wide range of economics and com-
puter science applications such as resource allocation, routing and network design prob-
lems. Rosenthal (1973), who was the first to consider this class of noncooperative games,
showed by a potential function argument, that they possess a pure-strategy Nash equi-
librium. In fact, Nash dynamics, where players iteratively improve their utilities, always
converge to an equilibrium after a finite number of steps. In Rosenthal’s model (standard
congestion games), a player’s strategy consists of a subset of a common set of resources.
The payoff received for selecting a particular resource depends only on the total number of
players sharing this resource. The utility a player derives from a combination of resources
is the sum of the payoffs associated with each resource included in his choice. Milchtaich
(1996) introduced a new variant of congestion games, namely the (singleton) congestion
games with player-specific payoff functions. In these games, each player has individual
non increasing payoff functions and is allowed to choose only one resource and not several
at a time. He showed that each game in this class admits at least one Nash equilibrium
that can be rehashed as a terminal point of a particular improvement dynamic.

A substantial literature has been devoted to particular subclasses and extensions of
congestion games. Most of the studies focus on the problem of finding and computing
efficiently only one Nash equilibrium, leaving open the question of identifying all Nash
equilibria. However, the characterization of the set of all equilibria, beyond its theoretical
interest, can be very useful when we have to choose between these equilibria on the basis
of performance criteria such as social optimality, or to explore intrinsic properties of
the game such as the price of anarchy1. In this paper, we address this question for a
simple subclass of congestion games which lie in the intersection between Rosenthal’s
and Milchtaich’s model. We refer to games in this class as monotone symmetric singleton
congestion games (SSCGs). Our approach yields a new and short proof establishing the
existence of a Nash equilibrium in this kind of games and shows how to straightforwardly
compute all equilibria using a simple and direct formula.

The rest of this document is organized as follows: section 2 briefly reviews the related
work, section 3 establishes the result and section 4 concludes the paper.

2. Related work

The existence of Nash equilibria in SSCGs is a simple corollary of Rosenthal’s theorem
(1973), since this kind of games is a special case of standard congestion games. The
family of SSCGs has been initially studied by Milchtaich (1996) as the symmetric case of
his model. He showed that every game in the more general class of singleton congestion
games with specific payoff functions possess Nash equilibria that can be computed in a
polynomial number of steps (of a best-replay improvement path)2. Ieong et al. (2005)
generalized this result to the largest class of singleton congestion games where the payoff
functions are not required to be monotone. They also showed that even optimal Nash
equilibria (for a certain class of optimality criteria) can be found in polynomial time.
Holzman and Law-Yone (1997) and Voorneveld et al. (1999) investigated the set of strong

1When utilities are replaced by costs, the price of anarchy of a game is the ratio of the social cost in
the worst Nash equilibrium to the minimum social cost possible.

2The class of congestion games with specific payoff functions was also studied independently by Quint
and Shubik (1994) and by Konishi et al. (1997).
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Nash equilibria in monotone singleton congestion games3. It turns out that this set
coincides with the set of Nash equilibria and with the set of profiles which maximize
the potential. Variants of (monotone) singleton congestion games have been studied in
terms of time convergence of the best-reply dynamics to a Nash equilibrium (Even-Dar
et al. 2003) and in terms of the existence of alternative concept of solution (Rozenfeld
and Tennenholtz 2006).

Nevertheless, as was mentioned above, all these researches enable one to find only
one (particular) equilibrium, ignoring the general structure of the set of all Nash equi-
libria. In the following, we improve the study of SSCGs by providing a simple formula
describing all these equilibria. In order to state our result, we first need to simplify the
analysis by moving to the ordinal representation of preferences, instead of the cardinal
one (Milchtaich 1996). Indeed, for this kind of games, we can, without affecting the set of
Nash equilibria, replace the values of the payment functions (i.e. cardinal representation)
by their ranks in a preference ordering representing the common ordinal utility function.

3. The result

In our framework, a SSCG is represented by a tuple Γ(N,R,-) where N is a set of n
players, R a set of m resources and - a weak ordering (a reflexive, transitive, antisym-
metric and complete binary relation) on R×{1, . . . , n}. We assume that - is decreasing
with the second component. This means that for all r in R and for all k and k′ in
{1, . . . , n}, k ≤ k′ ⇒ (r, k) % (r, k′). A player’s strategy corresponds to the choice of a
single resource in R. A (strategy) profile is an n−tuple σ = (σi)i∈N of R, where, for each
i in N , σi denotes the strategy of player i. For a profile σ = (σi)i∈N , let σ−i be the same
profile with i’s strategy excluded, so that (σ−i, σi) forms the complete profile σ. For a
profile σ = (σi)i∈N , the congestion on resource r (i.e. the number of players using r) is
defined by nr(σ) = |{i ∈ N : σi = r}|. The vector (n1(σ), . . . , nm(σ)) is the congestion
vector corresponding to σ. Note that players’ preferences over strategy profiles depend
only on the congestion on each resource: for player i, a profile σ is at least as good as
a profile σ′ if and only if (σi, nσi(σ)) % (σ′i, nσ′

i
(σ′)). In this ordinal context, a strategy

profile σ∗ is a Nash equilibrium of the game Γ if σ∗ is at least as good as (σi, σ
∗
−i), for all

i in N and all σi in R. Since players are anonymous, all strategy profiles that differ only
by a permutation of players can be identified with the corresponding congestion vector.
We refer to a congestion vector σ∗ = (n1, . . . , nm) as a Nash equilibrium if no player can
benefit from joining a (possibly empty) set of players sharing a different resource: for all
r, r′ in R with r 6= r′ and nr ≥ 1, we have (r, nr) % (r′, nr′ + 1).

In what follows, we develop a technique to enable a straightforward identification of
all Nash equilibria in a SSCG. For this purpose we need the next definition.

Definition 1. Let - be a weak ordering on R × {1, . . . , n} decreasing with the second
component. An n-sequence derived from - is a subset T of R× {1, . . . , n} such that:

• |T | = n.

• ((r, k) ∈ T and (r′, k′) 6∈ T )⇒ (r, k) % (r′, k′).

3A strong Nash equilibrium is a profile for which no subset of players has a joint deviation that strictly
benefits all of them, while all other players are expected to maintain their equilibrium strategies.
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• (r, k) ∈ T ⇒ ((r, k′) ∈ T,∀k′ ∈ {1, . . . , n} : k′ < k).

Thus, an n−sequence is simply a set of the most preferred n elements of R×{1, . . . , n}.
To illustrate this definition, let us consider the following situations.

Example 1.

• Let N = {1, 2, 3, 4, 5} and R = {a, b, c}. For simplicity and without losing integrity,
we will denote the couple (r, k) by kr. Suppose that the common ordinal utility
function is given by the following strictly decreasing ordering:

5c ≺ 4c ≺ 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3a ≺ 3b ≺ 2b ≺ 2a ≺ 3c ≺ a ≺ 2c ≺ c ≺ b︸ ︷︷ ︸ .
By definition 1, the unique 5-sequence is T = {3c, a, 2c, c, b}.

• Let N = {1, 2, 3, 4, 5, 6, 7, 8} and R = {a, b, c, d}. Suppose that the players’ prefer-
ences are given by the following weak ordering:
8c ∼ 8b ≺ 8a ∼ 8d ≺ 7c ∼ 7b ∼ 6c ≺ 7d ∼ 5c ∼ 4c ≺ 3c ∼ 6b ∼ 6d ≺ 5d ∼ 5b ∼
4b ∼ 7a ≺ 6a ∼ 4d ∼ 5a ≺ 4a ∼ 3a ∼ 3b ∼ 2b ∼ 3d ≺ 2a ∼ b ∼ 2c ≺ c ∼ 2d ≺ a ∼
d.
We have exactly three 8-sequences: T1 = {3d, 2a, b, 2c, c, 2d, a, d}, T2 = {2b, 2a, b, 2c,
c, 2d, a, d} and T3 = {3a, 2a, b, 2c, c, 2d, a, d}.

We can now formulate our result.

Theorem 1. Let Γ(N,R,-) be a monotone symmetric singleton congestion game, with
|N | = n and |R| = m. Then,

1. To each n-sequence T of - corresponds a unique Nash equilibrium of Γ. This
equilibrium is defined by σ∗ = (α1, . . . , αm), where αr is defined by, for r = 1, . . . ,m,

αr =

{
max{p : (r, p) ∈ T} if (r, 1) ∈ T
0 otherwise.

Reciprocally, each Nash equilibrium of the game Γ corresponds to an n-sequence of
-.

2. When the players’ preferences are expressed by a strictly decreasing ordering, the
game Γ admits exactly one Nash equilibrium.

3. The number of Nash equilibria of the game Γ equals the number of all n-sequences
extracted from -.

Proof. Since 2. and 3. are simple consequences of 1., it simply remains to prove the
first assertion. Let T be an n-sequence and let σ∗ = (α1, . . . , αm) be the m−components
vector defined by αr = max {p : (r, p) ∈ T} if (r, 1) ∈ T and αr = 0 if (r, 1) 6∈ T .
It is clear that

∑m
r=1 αr = n. Indeed, we can write R = R0 ∪ R1, where R0 = {r ∈

R : (r, 1) 6∈ T} and R1 = {r ∈ R : (r, 1) ∈ T}. Let r1, . . . , rt be an enumera-
tion of R1 (1 ≤ t ≤ m). We have

∑m
r=1 αr =

∑
r∈R0

αr +
∑

r∈R1
αr,

∑
r∈R0

αr =
0 and

∑
r∈R1

αr = n, since the sequence T is exclusively constituted by the terms
(r1, αr1), . . . , (r1, 1), (r2, αr2), . . . , (r2, 1), . . . , (rt, αrt), . . . , (rt, 1). Therefore,

∑m
r=1 αr = n,

337



Economics Bulletin, 2013, Vol. 33 No. 1 pp. 334-339

whence σ∗ is a congestion vector. Furthermore, for all r, r′ in R such that αr ≥ 1, we
have (r, αr) % (r′, αr′ + 1) because (r, αr) ∈ T and (r′, αr′ + 1) 6∈ T . Hence, σ∗ is a Nash
equilibrium.

Reciprocally, let σ∗ = (α1, . . . , αm) be a Nash equilibrium. Let r1, . . . , rt be an enumer-
ation of the setR1 defined byR1 = {r ∈ R : αr ≥ 1} and let T = {(r1, αr1), . . . , (r1, 1), . . . ,
(rt, αrt), . . . , (rt, 1)}. Obviously, T is an n-sequence. In fact, as σ∗ is a congestion vec-
tor, we have

∑m
r=1 αr = n and so |T | = n. On the other hand, by definition of T ,

(r, k) ∈ T ⇒ ((r, k′) ∈ T,∀k′ ∈ {1, . . . , n} such that k′ < k). Finally, let (r, k) ∈ T and
(r′, k′) 6∈ T . By definition of T , we have k ≤ αr and k′ ≥ αr′ + 1. Since σ∗ is a Nash
equilibrium, we have (r, αr) % (r′, αr′ + 1). By the monotonicity hypothesis, we obtain
(r, k) % (r, αr) % (r′, αr′ + 1) % (r′, k′).

To illustrate the above theorem, we continue with the previous example to show how
we can easily characterize all Nash equilibria.

Example 2. Reconsider the two cases of the first example. Applying our theorem, we
can find a Nash equilibrium for each n-sequence.

• Let N = {1, 2, 3, 4, 5} and R = {a, b, c}. Considering the players’ ordinal utility:
5c ≺ 4c ≺ 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3a ≺ 3b ≺ 2b ≺ 2a ≺ 3c ≺ a ≺ 2c ≺ c ≺ b︸ ︷︷ ︸,
we obtain T = {3c, a, 2c, c, b}. Selecting the greatest integer corresponding to each
resource, we identify the “unique” Nash equilibrium: σ∗ = (1, 1, 3). This means
that all Nash equilibria for this game correspond to the unique congestion vector
defined by na = 1, nb = 1 and nc = 3. Thus, a profile is a Nash equilibrium of this
game if and only if it is a permutation of the profile (a, b, c, c, c). For simplicity, we
note σ∗ = (a, b, 3c).

• Let N = {1, 2, 3, 4, 5, 6, 7, 8} and R = {a, b, c, d} and the weak ordering : 8c ∼ 8b ≺
8a ∼ 8d ≺ 7c ∼ 7b ∼ 6c ≺ 7d ∼ 5c ∼ 4c ≺ 3c ∼ 6b ∼ 6d ≺ 5d ∼ 5b ∼ 4b ∼ 7a ≺
6a ∼ 4d ∼ 5a ≺ 4a ∼ 3a ∼ 3b ∼ 2b ∼ 3d ≺ 2a ∼ b ∼ 2c ≺ c ∼ 2d ≺ a ∼ d.
Here we find one Nash equilibrium per n-sequence:

For T1 = {3d, 2a, b, 2c, c, 2d, a, d}, σ∗1 = (2a, b, 2c, 3d);
For T2 = {2b, 2a, b, 2c, c, 2d, a, d}, σ∗2 = (2a, 2b, 2c, 2d);
For T3 = {3a, 2a, b, 2c, c, 2d, a, d}, σ∗3 = (3a, b, 2c, 2d).

Hence, there are exactly three Nash equilibria in this game.

Note that the method described by Theorem 1 is not appropriate to the non-symmetric
case, where players are restricted to choose only one strategy, but they each have their
own utility function. The following example illustrates this fact.

Example 3. Let N = {1, 2, 3} and R = {a, b, c}. We consider the following players’
ordinal preferences:

3a ≺1 3b ≺1 2a ≺1 3c ≺1 2b ≺1 a ≺1 b ≺1 2c ≺1 c.

3c ≺2 2c ≺2 3b ≺2 c ≺2 2b ≺2 3a ≺2 b ≺2 2a ≺2 a.

3c ≺3 3a ≺3 2a ≺3 2c ≺3 3b ≺3 c ≺3 2b ≺3 b ≺3 a.
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The concept of an n−sequence does not apply in this case because we have three
different orderings. For player 1, we have the 3-sequence b ≺1 2c ≺1 c, for player 2:
b ≺2 2a ≺2 a and for player 3: 2b ≺3 b ≺3 a. Applying Theorem 1 to these sequences,
we obtain the following three congestion vectors: (b, 2c), (2a, b) and (a, 2b). However,
none of these three congestion vectors is appropriate to the three players simultaneously.
Thus, we could think about taking the last term of each of the three above orderings. In
this way, the strategy profile would be (c, a, a). But one can easily check that this profile
does not correspond to a Nash equilibrium. Nevertheless, there exists a Nash equilibrium
which is the profile (c, a, b).

4. Concluding remarks

In this paper we have proposed a new approach which enable one to find all Nash equi-
libria of a given symmetric singleton congestion game. While we do not deal with the
question of the computational complexity, we believe that our formula can contribute to
the algorithmic analysis of this class of congestion games. For example, it can help to
improve the time complexity of computing optimal Nash equilibria or calculate the price
of anarchy. In future research, we hope to extend our approach to the general case of
non-symmetric congestion games with player-specific payoff functions.
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