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1. Introduction

Consider a situation in which, for a given network, each jpdilinked agents bargain over
their endowments of information and suppose that each dggefits from the exchange of
information with her neighbors only when the bargaininghvatl of them finish. Situations
of this sort arise naturally when agents face decision prablin which not knowing others’
pieces of information decreases drastically the prokglfipicking the right actiort. In order
to obtain insights about how the network structure affeciseg and final payoffs, one could
propose more or less complex negotiation protoéols.

In this note, we propose a very simple protocol in which eaain pf directly connected
agents are engaged in an infinite horizon alternating-®fiegotiation and all negotiation pro-
cesses are simultaneous. Because each agent’s negotvéticgach neighbor is independent
of her negotiation with any other neighbor, Rubinstein’8§2) logic can be directly applied
to each given link in the network, taken as given the negotigirocesses that the two agents
have with other neighbors. As a consequence, for each giviertthe agent who proposes first
enjoys a first-mover advantage or initial bargaining povweegctly as in Rubinstein’s (1982)
seminal paper. Nevertheless, in our simple bargainingpuodtthe fact that the agents are con-
nected through a network entails important features tiattthe determination of equilibrium
prices and payoffs. On the one hand, the network imposegtests to who can negotiate with
whom. On the other hand, the network allows also for a setftérént possible configurations
of the agents’ initial bargaining power. In other words,teaetwork describes a set of possible
ways in which the first-mover advantage can be distributedrapnthe agents. This note char-
acterizes equilibrium prices and final payoffs for some nvegfnl distributions of the initial
bargaining power for two specific network structures, ttea and the line. Using the afore-
mentioned protocol, we show that, although the relativeotiagjon power is constant within
each given link, prices and payoffs are crucially affectgdh®e network structure through the
possible configurations of the first-mover advantage thatlatvs. The mechanism through
which prices are affected in our model resembles that ptesdPolanski (2007). In that pa-
per prices are influenced by the distribution of a local mappower, which depends on the
network structure, while in our setup prices are influenggethk distribution of the first-mover
advantage.

Unfortunately, analyzing a noncooperative game of barggifor general network struc-
tures is usually intractabGiven this modeling restriction, our focus on the star ardithe is

Lin practice, decision makers seeking advice in a certaid figloften to consult all available experts in their
neighborhood before taking their decisions. This is paldidy the case if those experts hold pieces of information
that are complementary among them. For example, Airbusiteghthat the main cause for incurring in 500,000
million losses in 2006 was that their French and German tedich®ot receive the complementary pieces of
information that each had (regarding design software)reeiesembling parts of their A380 Jumbo.

2For example, Calvé-Armengol (1999) adapts Rubinsteir@82) model of alternating offers to a three-agent
network where a central agent negotiates for a fixed numbpedds with a neighbor and then switches to the
other neighbor for another fixed number of periods. One caldd consider complex protocols in which agents
indirectly connected in a network can be engaged in mudtidtbargaining.

3In his book on social and economic networks, Jackson (2008}pout that the application of noncoopera-
tive game theory to study bargaining processes in netwaskgenerally intractable because of the large number
of players and the rather open-ended bargaining protoawmlany settings” (p. 412). A notable exception is the
excellent analysis carried out recently by Manea (2011jcvhrovides results for fairly general networks. Al-
though this note does not consider more complex networksgthwo simple structures are sufficient to provide
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motivated as follows. First, both are connected networls no cyclest Second, the star is the
canonical case where the population splits into (a) a segehis with a single neighbor each,
and (b) a single agent with everyone else as neighbor. Ontlieg band, the line is a typical
case of connected network where all agents (except thosattthe ends of the line) have the
same number of neighbors. Also, indirect connections agsgmt in the line in a very simple
and neat way, and there is a single path connecting any pagerits. Third, usinglegree
centralityas centrality measure, the star provides a structure whneragent enjoys maximum
centrality and bargains with a set of agents, each of whonminaisnal centrality. On the other
hand, in the line each agent (except those two at the ends)<tije same centrality. Thus, the
star and the line provide a simple setting that serves aschbsark to analyze how the network
structure, together with the distributions of the first-rapadvantage that it allows, influence
prices and payoffs.

We use the star to study the influence only of direct connestand degree centrality on
prices and final payoffs. Consequently, we consider twaeexérdistributions of the first-mover
advantage, one in which the central agent has first-moverddge with respect to each periph-
eral agent, and another in which each of the peripheral adea# first-mover advantage with
respect to the central agent. By doing so, possible inflleatendirect connections are ruled
out. On the other hand, we use the line to analyze the influeho®lirect connections. To
avoid ex-ante asymmetries, we endow each agent with firsemadvantage with respect to
her immediate successor.

Related literature on bargaining in networks considemsafagent networks with sequential
bargaining rounds (Calvo-Armengol, 1999), networks ofessland buyers (Corominas-Bosch,
2004), networks of information flows in cooperative setsirf§olanski, 2007), and stationary
networks in noncooperative settings (Abreu and Manea, 2@akea, 2011).

2. The Model

2.1. Network Notation

Consider a finite set of agents= {1,...,n}, with n > 3. A network gon N is a collection of
pairs from the seN and each paifi, j} € g is alink. We will use the shorthand notatiop
instead to denote a link. A networkrestricts the agents’ bargaining possibilities: two agent
i, j € N can bargain with each other onlyijfe g. Let Nig denote the set of agens$ neighborsn
networkg. We will restrict our attention to two specific network stuies, namely, thetarand
theline. Without loss of generality, we will specify the star netwasgs := {12,13,...,1n}
and the line network ag_ :={12,23,...,(n—1)n}.

2.2. Bargaining in the Network

Each agent is initially endowed with one unit of informati@md obtains payoffs from her use
of information. In addition, each agent receives also raesrirom exchanging her endowment
of information with her neighbors in the network. We assuim aan agent’s payoffs due to

clear insights into our research questions.

4While the existence of equilibrium in mixed strategies isgunteed in our model, pure-strategy equilibrium
may fail to exist in networks with cycles (under some disttibns of the first-mover advantage). The interpretation
of mixed-strategy equilibrium for our benchmark is uncleaus.
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the use of information are strictly increasing in any othgerat’s piece of information. Thus,
the pieces of information held by different agents are cemgntary. Since information is a
non-depletable good, it follows that each agent finally imexsethe unit of information initially
owned by each of her neighbors, provided that an agreemeeached with each of them.
Then, an agent’s payoffs due to the use of information depemdcher number of neighbors.
Let vig be the payoff that accrues to ageffitom the use of information in netword Also, let
VY = Zinleig be the total payoffs due to the use of information in the dgcMhen agents are
connected through network

Each pair of linked agents in a network bargain over the ivaairice of their initial en-
dowments of information following thafinite horizon bargaining game of alternating offers
proposed by Rubinstein (1982). The time period for the bangg process within any link is
discrete and labelled kye T, whereT is the set of positive integers. In each dateT, one of
the agents proposes an agreement price and the other atpentagicepts or rejects it.

To model the agents’ interactions, we need to fix one of thetage each given link|
as the first mover in that link. The first mover is the agent wiaots proposing a price in the
first period, so that she enjoys an initial favorable bang@position, orfirst-mover advantage
with respect to the other agent in the link. Suppose ithsthe first mover in linkij. Then,
let gi; € [0,1] be the relative price that summarizes the terms of trarsadietween agenis
andj. Formally, we specifyy; as the ratio between the price of agéstinformation over the
sum of prices of both agents’ pieces of information. Thewsfa; 4 qji = 1 by construction. If
the price offer is accepted, then the bargaining ends aneitteange takes place at the agreed
price. If the price offer is rejected, then the play passetdhe next date, where the rejecting
agent proposes in turn an agreement price. Bargainingmugegiin this way with no limits to the
number of dates. Throughout the paper, we will follow theatiohal convention that if agent
is the first mover in link j, then agents and j negotiate over time by proposing each of them
values for the pricejj € [0, 1].8 Each agent is engaged from date 1 in a bilateral bargaining
process as the one above described with each of her neighili ®argaining processes across
different links are simultaneous and independent. Ageans Iperfect recall.

Given the bilateral bargaining processes between linkedtagn the network, each agent
receives the revenue from exchanging her initial endowroginformation with her neighbors.
Suppose that agenis the first mover in the linkj. Then the payoff that accrues to agefrom
the exchange of information with her neighbjcat priceq; is the net revenue

ri(dj) =dj-1—-(1—qj) -1=2q; -1, 1)
and the payoff to agertfrom trading with agentis given by
ri(dij) == (1—0j) -1—0qj 1=1-2q;. 2

Note thatrj(cj) = —ri(j)-
Agents are impatient and discount their future payoffs gigncommon discount factor
0 € (0,1). We assume that each agent receives the payoffs due bota ts¢hand exchange

SInformation structures where agents held complementdoyrimation about the state of the world and each
agent values the pieces of information possessed by othersoasidered, among others, by Hagenbach and
Koessler (2010), and Jiménez-Martinez (2006).

SNote that the bargaining in each linkcan be regarded as a “split-the-pie” game in whigh, 1 — gjj ), with
gji = 1—qjj, represents a possible division of the desirable pie.
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of information at the date at which the bargaining procesgds each of her neighbors ends.
One way to interpret this assumption is by considering thaheagent needs to aggregate all
pieces of information gathered from her neighbors in orddret able to benefit from the use of
information.

Assumption 1. For a given networlg, each agente N can only benefit from the use and the
exchange of information at the date in which the bargainnoggsses with all of her neighbors
finish.

The above assumption implies that an agent’s optimal bairgaidecisions are related to
her relative position in the network. The agent cares aboeitdate of agreement for each
of her neighbors and, therefore, her bargaining decisionsifo different neighbors must be
correlated. Such a correlation depends on the number of éighloors, on the number of
neighbors that each of her neighbors has, and so on.

Finally, note that in order to specify completely this ganfigoairwise negotiations for a
given network, one needs to label a first mover for each linkhn network. Specifically,
given a networlg, we partition each agenmts set of neighborsNg into two setsNg andN,g,
whereNg denotes the set of ageird neighbors who are second movers relative to agant
Ng denotes the set of ageri$ neighbors who are first movers with respect to agenitet
Ng {N?},.n and N = (N7}, < SO that the paiM(g) := (N, NY) completely describes a
distribution of the first-mover advantage associated wetworkg. We denote by g the
game of pairwise negotiations that we have described fovengietworkg whenM(g) is the
associated distribution of the first-mover advantage.

We introduce now formally the elements needed to specify fiagoffs and to define equi-
librium. Let A andR be two statements meaning, respectively, “Accept” andéBej Consider
a networkg and a given linkj € g, where agent is chosen (without loss of generality) as the
first mover in the bargaining with agent A strategy for agent i with respect to her neighbor j
is an infinite sequence with the forsy = (q},y?, &, y*,. ..), whereq; € [0,1] andy* € {A R}
for eacht € T. In this case, a strategy for aggntespect to agentis an infinite sequence with
the forms;i = (yl,qizj,y3,qﬁ ,...). Letg = (Sj)jeNig be astrategyfor agenti and lets= (s )ien
be astrategy profile

Let (sj,Sji)r € R? be the pair of coordinates in threth position of the strategy pa(sj, Sji)-

If (sj,Sji)r = (A qiTj), then the priceqiTj is accepted by agentat datet. Analogously, if
(sij,sji)r = (dj,A), then the priceyf; is accepted by agerjtat dater. Consider a strategy
pair (sj,sji) and take a given date< «. The acceptance date, starting from dgte the
bargaining process between agardsd j is given by

T (S, Sji) == rTn>|p{r >t : either(sj,sji)r = (Aqf) or (s, Sji)r = (0, A) } .

Given Assumption 1, we are interested in the latest acceptdate for ageritacross all her
neighbors in the network. Starting from daté¢his latest acceptance date is

i (i,s) = mﬁXTt C (S5 Sji)-
je

Note that the agreement datgss;j,sji) specified above may not exist for each dasnd
each strategy profile This is the case when agemtand j do not reach an agreement starting
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from datet. If there is no agreement between agemind one of her neighbors, the latest
acceptance datg (i,s) does not exist either. In this case, we wrifgi,s) = co.

For a strategy profils, let uﬁt(s) be the value at timeof the discounted aggregate payoff
to agent due to her bargaining with her neighbors in netwgrk\e assume tha,qgt(s) =0if
17(i,8) = . The interpretation is that ageinteceives a zero payoff at a given date if she does
not reach an agreement with any of her neighbors from thetatavards. If, instead; (i, s) is a
finite integer, then agemexchanges her endowment of information with each of herhimigs,
and obtains her payoffs both from the use and the exchangéoofation. Thus,

g 0 if 77(i,s) = oo, 3
gt <Vig+2keu?ri(Qik)+Z|eﬁ?ri(q”)) ift <7(i,8) <oo. ©

Note that, for a strategy profi the final payoff to agentin the gamd 4 is given byuﬁl(s).
Then, let us simply write(s) = u’, (s) to ease notation.

Definition 1. Given a networlg and a distribution of the first-mover advantdgég) for that
network, asubgame perfect Nash equilibrium (SREXhe game’y, ) is a strategy profile®
such that for each agen& N and each datec T, we haveuﬁt(s*) > uﬁt(s,s*_i) for eachs;.

3. Main Results

As shown by Rubinstein (Conclusion 2, 1982), the bargaimjame corresponding to each
pair of linked agents has a unique subgame perfect equiibm which the reference agent
proposes a certain price and her opponent accepts it in sheléite. This price is characterized
by a pair of equations which reflect intertemporal indiffeze requirements for each of the
agents. Consider a netwogkand suppose that agens the first mover in the linkj € g. Then,
the indifference condition for agenbetween exchanging her endowment at pggen period

t =2 or at priceqjj in periodt =1 is

5| VP +ri(a) + Z (G +
keNP\{j} |

and the indifference condition for agepbetween exchanging her endowment at pagen”
periodt = 2 or at priceqi*j in periodt =1 1is

(i) | =vP+ri(Gij) + 2 i)+ 3 rildi),
keNP{j)

NY leNy?

€Ny

5(V?+ri(qii)+ > ri(dj) + Z rj(qr,-)) :V?‘l‘rj(qi*j)‘i‘ > ri(aj) + Z ri(a)-
NT\{i} NP\ {i}

g g N
kemj le i kemj le i

Since an agreement is reached at1 in equilibrium, we can use the two indifference require-
ments above, together with the implicatinfdij) = —r;(Gij) and the definition of payoffs in
(3), to obtain that, ifs* is a SPE offyq), thenu?(s*) = (1/8)uf(s). Thus, independent of
the networkg and of the distribution of the first-mover advantdgeg) in each given link, the
first mover extracts a surplus of the second mover, exacttijegnsame way as in the Rubin-
stein’s (1982) negotiation model with only two agents. Timgplication is intuitive since the
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two agents who negotiate in a given link take as indepenglgnien the rest of negotiation
processes in which they are involved.

Nevertheless, given Assumption 1, an agent cares, in tiralbgame, about the negotiation
processes with all her neighbors in the network. As a coresamp) her optimal strategy depends
on her position in the network. In short, equilibrium pricasd payoffs are affected by the
distribution of the first-mover advantage which, in turngasditioned by the network structure.
Since bargaining processes are independent across péitkenf agents, the SPE of our game
Mwm(g) Is characterized by a system of linear equations which &edlboth to the structure of
the networkg and to the distribution of the first-mover advantagéy). For a general network
g, this system of equations can be expressedl-as= b, whereq denotes a price vector, ad
andb are, respectively, a matrix and a vector of constants whegledd org and on the chosen
M(g). The size of this system is given by the number of links in mekng. If A-q=b has
some solutiorg*®, then it corresponds to the price vector associated to a SPEre strategies
of FM(g).7 We show that the systems of equations associated to thenstdha line (for some
meaningful specifications d¥1(g)) have a unique solution, which implies uniqueness of the
SPE for the corresponding games.

The following proposition characterizes equilibrium gscand payoffs for the star network
for two extreme cases: (a) each of the peripheral agentssisiiover in her link, and (b) the
central agent is first mover with respect to each of the pergilhagents.

Proposition 1. Consider the star network given by ¢ {12,13,...,1n}. Suppose that either
each of the peripheral agents is first mover in her link, L&?S = {1} foreach je {2,3,...,n},

or the central agent is first mover with respect to each of tagpheral agents, i.e.,_ﬁ\? =
{2,3,...,n}. Then, under Assumption 1, the gaMmg g has a unique SPE where the prices
and the payoffs are given, respectively, by:

(@) for Ni* = {1} for each je {2,3,...,n},

. l—VJgs Vi
G="% Ton_1rs)

uPs(s’) = [ﬁ} VO, and J5(s") = {ﬁ} V9  foreach jc {2,3,...,n};

(b) for N% ={23,....n},

W= "2 Tairm-na )
1 5
= |——— _|VYs sie¥y _ |9 |y\0s .
) [1+(n_1)5}V , and §5(s™) [1+(n_1)6]v for each je {2,3,...,n}.

Thus, a first proposer obtains a surplus from each of her beighIn particular, the payoff
gain to any agent for each link in which she moves from prampsiecond to proposing first
is (1—0)V9/(1+ ). It follows that the agent with the highest centrality iseabb extract

Kk

us(s

"Notice that the system-q= b does not have a solution when the matkis singular. In this case, there is no
SPE ofl"yg) in pure strategies. For example, such a situation emerges wie considers a wheel network and a
distribution of the first-mover advantage in which each aggefirst mover relative to her immediate successor.
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the highest surplus possible in this network when she ertjoydirst-mover advantage with
respect to each of the peripheral agents. The star netwdrkhartwo distributions of the first-

mover advantage studied in Proposition 1 do not allow foraitivantage of a first mover to be
transmitted across indirectly connected agents.

Can a network facilitate the propagation of the relativéiahbargaining power of a first
mover through indirect connections? The next propositiews that the answer is affirmative
and that this sort of propagation of the first-mover advam&ftects equilibrium prices. Specif-
ically, we consider that the agents are connected alongarliwhich they are ordered from left
to right, and each agent is first mover relative to her imntediaccessor in the line according
to this orde Under this distribution of the first-mover advantage, akmatg, except those at
the two ends of the line, are symmetric with respect to theiral bargaining power (i.e., each
of them is first mover relative to one neighbor and second mVlative to the other neighbor).

Proposition 2. Consider the line network given by g {12 23,...,(n—1)n}. Suppose that,
for eachic {2,3,...,n—1}, we have M- = {i — 1} andN{* = {i 4+ 1}. Then, under Assump-
tion 1, the gamé ) has a unique SPE such that each ageat{l,...,n—1} charges a
price . . . .

L1 T Y00 - S TS

to each neighbor4- 1 along the line. Moreover, in this SPE, each agent i’'s payoffiven by

ult (st) = &' 1 (711__;) VoL,

Thus, each agent benefits not only from her position relativeer immediate successor but
also from the position of the indirectly connected agente ate located at her right-hand side.
Each agent extracts a surplus from the benefits that herlm@igimjoys from her own neighbor,
and so on. Indirect connections play a key role in the equilib prices and payoffs.

4. Concluding Comments

While equilibrium shares depend crucially on the distridmitof the first-mover advantage,
the network describes the different ways in which the firstrar advantage can be distributed
among the agents. In this sense, the network providesasts, as well as some degree of
flexibility, over the bargaining processes that determimnegs. For the star, we have intention-
ally distributed the first-mover advantage in a way suchitiditect connections are irrelevant.
Otherwise, it is easy to show that the gain from proposinggirspagates through the indirectly
linked agents along that path in the star, exactly as it do¢isa line. For the line, one could
propose situations in which some agents in the line do nqigwe first in any of the links in
which they are included. It would be interesting to analyze equilibrium prices and payoffs
in these cases.

Finally, starting with a model of bilateral negotiationgween directly connected agents,
one could possibly add a variety of more o less complex mesirethrough which the network

80f course, the results in Proposition 2 continue to holditatalely if we reverse this order.
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can influence equilibrium prices and payoffs. Perhaps, uadme mechanisms, the initial
advantage that a first mover has with respect to a neighbda ewan be affected by the structure
of the network. Of course, this would provide us with a modtaltrelates the network structure
to prices and payoffs. This note can be rather viewed as empttto use a very simple protocol
(in which, for each given link, nothing goes beyond the ihssgrovided by Rubinstein, 1982)
to study carefully how the network structure can influencegzrand payoffs, provided that the
agents benefit from bargaining only when all their negatiaprocesses finish.

Appendix

Proof of Proposition 1 Consider the star netwoids = {12,13,...,1n} and fix a given link

1j € gs.

(a) Suppose that the peripheral aggns the first mover with respect to the central agent 1.
Then, equation

5 (V-+ry(Gj2)) = v+ (dj) @)
represents the indifference condition for agghetween trading her endowment of information

with agent 1 at price«q]‘1 in periodt = 2 or atdj, price in periodt = 1. On the other hand,
equation

0 (V?S+r1(d11>+ ; r1<<1’|21>> =Vi*+ri(djy) + ; r1(0k1) (5)
kAT, | k#1,]

represents the indifference condition for agent 1 betweehanging her endowment of infor-
mation with agentj at pricedjj; in periodt = 2 or at priceq]-k1 in periodt = 1. Consider the
pricesqy,, for k # 1, j, as exogenously given for the moment. By applying the exoeas for
agents’ revenue in (1) and (2) to agents 1 gnaind by substituting pricgj; from equation (4)
into equation (5), we obtain

vgl’s—év?3+n—1+5
5 .

(1+90)gj1+ ) =
kLT, |

Now, consider simultaneously the bargaining processealfdinks 1j, j # 1. Then, we
obtainn— 1 equations as the one above, one equation for ¢a€ll. This gives us a linear
system whose solutions are the priq%s ] # 1. Using matrix notation, we can be rewrite this
system a#\-q" = b, where

1+s) 1 ... 1 0y
1 1+9) ... 1 3

A= . ( . ) ) . ) = q31 ’
1 1 ... (1+9) (o)

and
vgs—évgern—lJrcS
1|vi®—0v3®+n—-1+9
=3 E
VE -V +n-1+6

3106



Economics Bulletin, 2012, Vol. 32 No. 4 pp. 3098-3110

Each bilateral bargaining process within the star networkesponds to an infinite-horizon
alternating-offers process between two agents. Then Xiggeace of a unique solution to the
systemA- q* = b above implies Rubinstein’s (1982) conditions for the estise of a SPE for
the collection of all bilateral alternating offers processwithin the network. Application of
Cramer’s rule gives us .

S
1-v] n SheaVie
2 2(n—1+9)°
By using the expression for payoffs in equation (3), we abthat, in this SPE, the payoff to
agent1lis

*
Qj1=

b} n
OS /o) Z gs

and the payoff to each peripheral agémt {2,3,...,n} is

1 n
U () {n—1+6} kzzlv" '

(b) Suppose that the central agent 1 is first mover with régpebe peripheral agernt Then,
equation

@)+ 3 e = <V%S+r1<q1‘]‘> 3 r1<<1’£§>> (6)
k 17j k 1,]

represents the indifference condition for agent 1 betweehanging her endowment of infor-
mation with agent at pricedj; in periodt = 2 or at priceq*fjk in periodt = 1. Consider the
pricesqyy, fork # 1, j, as exogenously given for the moment. Also, equation

VB 4ri(aij) =9 <V?S+rj(q”)) )

represents the indifference condition for agghetween trading her endowment of information
with agent 1 at priceqj]‘ in periodt = 2 or atdyj price in periodt = 1. By applying the
expressions for agents’ revenue in (1) and (2) to agents 1j aanld by substituting price;
from equation (7) into equation (6), we obtain

—VPP+ VP +14+(n-1)8

(1+0)qj+9 ) o= >

k#£1, ]

Now, consider simultaneously the bargaining processealfdinks 1j, j # 1. Then, we
obtainn— 1 equations as the one above, one equation for ¢a€li. This gives us a linear
system whose solutions are the pri<r.§§, j # 1. Using matrix notation, we can rewrite this
system a®\- q** = b, where

(1+9) o o) o]
0 1+9) ... 0 b

A= . ( . ) . . P = q31 )
5 & .. (1+0) o
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and

5v§s+v§S+1+( ~-1)5
b—l —6vs+v3s+1+( -1)0
T2

—5v§5+vﬂs+ 1+(n—-1)6
Each bilateral bargaining process within the star networkesponds to an infinite-horizon
alternating-offers process between two agents. Thenxisgeace of a unique solution to the
systemA- g** = b above implies Rubinstein’s (1982) conditions for the extise of a SPE for
the collection of all bilateral alternating offers processwithin the network. Application of
Cramer’s rule gives us

9 9
o TV 0%y (12 o3
1 2 2[1+(n—1)d] 2 2[1+(n—1)08] )

By using the expression for payoffs in equation (3), we abthat, in this SPE, the payoff to
agent1is
1

n
Os (@t __ 9s
U (s7) = [1+(n—1)5} 2
and the payoff to each peripheral agémt {2,...,n} is

n
OS (o¥*\ __
usS(s
77 = [1—1— n—1)90 ]Z
as stated. |

Proof of Proposition 2 Consider the line networy. = {12 23,...,(n—1)n}. Fix link 12 and
suppose that agent 1 is first mover with respect to agent Zh, Hguation

S (Vi +r1(qip)) = Vi +r1(Gi2) (8)

gives us the indifference condition for agent 1 between arging her endowment of infor-
mation with agent 1 at price;, in periodt = 2 or at priceq> in periodt = 1. Analogously,
equation

& (V3" +r2(Gr2) + ra(d3s)) = V3" + ra(dip) + ra(dss) ©)

specifies the indifference condition for agent 2 betweernarging her endowment of infor-
mation with agent 1 at pricg7 in periodt = 2 or at priceq;, in periodt = 1. Take pricegs,

as exogenously given for the moment. By applying the expasdor agents’ revenue in (1)
and (2) to agents 1 and 2, and by substituting pgicefrom equation (8) into equation (9), we

obtain T
i . V3t —ovit +
(1490)ajp— oz = 2——1— 21 :

Now, fix a link i(i + 1), connecting agents who are not at the ends of the line,iie.,
{2,...,n—2}, and suppose that agenits second mover with respect to ageént 1 and first
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mover with respect to agent+ 1. Suppose for the moment that the bargaining prices corre-
sponding to any other link are exogenously given. By procegdnalogously as done above
for link 12, we obtain

vt —6ng

=801 + (L4801 — T ayisg = >
Finally, by doing the analogous computations for limk— 1)n, we obtain

vk — oV |+ 1

—00(n_p)n-1) + (1+0)Up_1)n = >
Now, consider simultaneously the bargaining processesaall links(i+1),i € {1,...,n—1},
in the network. Then, we obtain a linear systermef1 equations withn— 1 unknownsq;‘(i+l),

i €{1,...,n—1}. All prices are simultaneously obtained by solving thigin system. Using
matrix notation, this system can be expressed-ap = b, where

(1+3) -1 0 0 0 a1o
-5 (1+9) -1 0 0 023
0 -5  (149) 0 0 O34
A= : : : : : ’ q*: :
0 0 0 (1+9) -1 qzkn_z)(n_l)
0 0 0 -3 (1+9) A1)
and
—OVi-+ 8
vg 5ng
b= 5 E
\/gL _6Vg|—2
v —5ng1+1

Each bilateral bargaining process within the line netwankesponds to an infinite-horizon
alternating-offers process between two agents. Then Xiggeace of a unique solution to the
systemA- g* = b above implies Rubinstein’s (1982) conditions for the extise of a PBE for
the collection of all bilateral alternating offers processvithin the network.

Application of Cramer’s rule gives us

. 1+Zk Vi Z'J 00 — i Vit iz 15]
i(i+1) = 2 ZZT:(%&

By using the expression for payoffs in equation (3), we abthat, in this PBE, the payoff to
each agente 1,...,nis given by

5I 1 n i1 1-96
4 ‘[zn ga]Z =9 (fan)vg“
J

as stated. |
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