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1. Introduction

Consider a situation in which, for a given network, each pairof linked agents bargain over
their endowments of information and suppose that each agentbenefits from the exchange of
information with her neighbors only when the bargaining with all of them finish. Situations
of this sort arise naturally when agents face decision problems in which not knowing others’
pieces of information decreases drastically the probability of picking the right action.1 In order
to obtain insights about how the network structure affects prices and final payoffs, one could
propose more or less complex negotiation protocols.2

In this note, we propose a very simple protocol in which each pair of directly connected
agents are engaged in an infinite horizon alternating-offers negotiation and all negotiation pro-
cesses are simultaneous. Because each agent’s negotiationwith each neighbor is independent
of her negotiation with any other neighbor, Rubinstein’s (1982) logic can be directly applied
to each given link in the network, taken as given the negotiation processes that the two agents
have with other neighbors. As a consequence, for each given link, the agent who proposes first
enjoys a first-mover advantage or initial bargaining power,exactly as in Rubinstein’s (1982)
seminal paper. Nevertheless, in our simple bargaining protocol, the fact that the agents are con-
nected through a network entails important features that affect the determination of equilibrium
prices and payoffs. On the one hand, the network imposes restrictions to who can negotiate with
whom. On the other hand, the network allows also for a set of different possible configurations
of the agents’ initial bargaining power. In other words, each network describes a set of possible
ways in which the first-mover advantage can be distributed among the agents. This note char-
acterizes equilibrium prices and final payoffs for some meaningful distributions of the initial
bargaining power for two specific network structures, the star and the line. Using the afore-
mentioned protocol, we show that, although the relative negotiation power is constant within
each given link, prices and payoffs are crucially affected by the network structure through the
possible configurations of the first-mover advantage that itallows. The mechanism through
which prices are affected in our model resembles that present in Polanski (2007). In that pa-
per prices are influenced by the distribution of a local monopoly power, which depends on the
network structure, while in our setup prices are influenced by the distribution of the first-mover
advantage.

Unfortunately, analyzing a noncooperative game of bargaining for general network struc-
tures is usually intractable.3 Given this modeling restriction, our focus on the star and the line is

1In practice, decision makers seeking advice in a certain field try often to consult all available experts in their
neighborhood before taking their decisions. This is particularly the case if those experts hold pieces of information
that are complementary among them. For example, Airbus reported that the main cause for incurring in 500,000
million losses in 2006 was that their French and German teamsdid not receive the complementary pieces of
information that each had (regarding design software) before assembling parts of their A380 Jumbo.

2For example, Calvó-Armengol (1999) adapts Rubinstein’s (1982) model of alternating offers to a three-agent
network where a central agent negotiates for a fixed number ofperiods with a neighbor and then switches to the
other neighbor for another fixed number of periods. One couldalso consider complex protocols in which agents
indirectly connected in a network can be engaged in multilateral bargaining.

3In his book on social and economic networks, Jackson (2008) points out that the application of noncoopera-
tive game theory to study bargaining processes in networks “is generally intractable because of the large number
of players and the rather open-ended bargaining protocol inmany settings” (p. 412). A notable exception is the
excellent analysis carried out recently by Manea (2011), which provides results for fairly general networks. Al-
though this note does not consider more complex networks, these two simple structures are sufficient to provide
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motivated as follows. First, both are connected networks with no cycles.4 Second, the star is the
canonical case where the population splits into (a) a set of agents with a single neighbor each,
and (b) a single agent with everyone else as neighbor. On the other hand, the line is a typical
case of connected network where all agents (except those twoat the ends of the line) have the
same number of neighbors. Also, indirect connections are present in the line in a very simple
and neat way, and there is a single path connecting any pair ofagents. Third, usingdegree
centralityas centrality measure, the star provides a structure where one agent enjoys maximum
centrality and bargains with a set of agents, each of whom hasminimal centrality. On the other
hand, in the line each agent (except those two at the ends) enjoys the same centrality. Thus, the
star and the line provide a simple setting that serves as a benchmark to analyze how the network
structure, together with the distributions of the first-mover advantage that it allows, influence
prices and payoffs.

We use the star to study the influence only of direct connections and degree centrality on
prices and final payoffs. Consequently, we consider two extreme distributions of the first-mover
advantage, one in which the central agent has first-mover advantage with respect to each periph-
eral agent, and another in which each of the peripheral agents has first-mover advantage with
respect to the central agent. By doing so, possible influences of indirect connections are ruled
out. On the other hand, we use the line to analyze the influenceof indirect connections. To
avoid ex-ante asymmetries, we endow each agent with first-mover advantage with respect to
her immediate successor.

Related literature on bargaining in networks considers three-agent networks with sequential
bargaining rounds (Calvó-Armengol, 1999), networks of sellers and buyers (Corominas-Bosch,
2004), networks of information flows in cooperative settings (Polanski, 2007), and stationary
networks in noncooperative settings (Abreu and Manea, 2012; Manea, 2011).

2. The Model

2.1. Network Notation

Consider a finite set of agentsN = {1, . . . ,n}, with n≥ 3. A network gon N is a collection of
pairs from the setN and each pair{i, j} ∈ g is a link. We will use the shorthand notationi j
instead to denote a link. A networkg restricts the agents’ bargaining possibilities: two agents
i, j ∈N can bargain with each other only ifi j ∈ g. LetNg

i denote the set of agenti’s neighborsin
networkg. We will restrict our attention to two specific network structures, namely, thestarand
the line. Without loss of generality, we will specify the star network asgS := {12,13, . . . ,1n}
and the line network asgL := {12,23, . . . ,(n−1)n}.

2.2. Bargaining in the Network

Each agent is initially endowed with one unit of informationand obtains payoffs from her use
of information. In addition, each agent receives also revenues from exchanging her endowment
of information with her neighbors in the network. We assume that an agent’s payoffs due to

clear insights into our research questions.
4While the existence of equilibrium in mixed strategies is guaranteed in our model, pure-strategy equilibrium

may fail to exist in networks with cycles (under some distributions of the first-mover advantage). The interpretation
of mixed-strategy equilibrium for our benchmark is unclearto us.
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the use of information are strictly increasing in any other agent’s piece of information. Thus,
the pieces of information held by different agents are complementary.5 Since information is a
non-depletable good, it follows that each agent finally receives the unit of information initially
owned by each of her neighbors, provided that an agreement isreached with each of them.
Then, an agent’s payoffs due to the use of information depends on her number of neighbors.
Let vg

i be the payoff that accrues to agenti from the use of information in networkg. Also, let
Vg = ∑n

i=1vg
i be the total payoffs due to the use of information in the society when agents are

connected through networkg.
Each pair of linked agents in a network bargain over the relative price of their initial en-

dowments of information following theinfinite horizon bargaining game of alternating offers
proposed by Rubinstein (1982). The time period for the bargaining process within any link is
discrete and labelled byt ∈ T, whereT is the set of positive integers. In each datet ∈ T, one of
the agents proposes an agreement price and the other agent either accepts or rejects it.

To model the agents’ interactions, we need to fix one of the agents in each given linki j
as the first mover in that link. The first mover is the agent who starts proposing a price in the
first period, so that she enjoys an initial favorable bargaining position, orfirst-mover advantage,
with respect to the other agent in the link. Suppose thati is the first mover in linki j . Then,
let qi j ∈ [0,1] be the relative price that summarizes the terms of transaction between agentsi
and j. Formally, we specifyqi j as the ratio between the price of agenti’s information over the
sum of prices of both agents’ pieces of information. Therefore,qi j +q ji = 1 by construction. If
the price offer is accepted, then the bargaining ends and theexchange takes place at the agreed
price. If the price offer is rejected, then the play passes onto the next date, where the rejecting
agent proposes in turn an agreement price. Bargaining continues in this way with no limits to the
number of dates. Throughout the paper, we will follow the notational convention that if agenti
is the first mover in linki j , then agentsi and j negotiate over time by proposing each of them
values for the priceqi j ∈ [0,1].6 Each agent is engaged from datet = 1 in a bilateral bargaining
process as the one above described with each of her neighbors. The bargaining processes across
different links are simultaneous and independent. Agents have perfect recall.

Given the bilateral bargaining processes between linked agents in the network, each agent
receives the revenue from exchanging her initial endowmentof information with her neighbors.
Suppose that agenti is the first mover in the linki j . Then the payoff that accrues to agenti from
the exchange of information with her neighborj at priceqi j is the net revenue

r i(qi j ) := qi j ·1− (1−qi j ) ·1= 2qi j −1, (1)

and the payoff to agentj from trading with agenti is given by

r j(qi j ) := (1−qi j ) ·1−qi j ·1= 1−2qi j . (2)

Note thatr j(qi j ) =−r i(qi j ).
Agents are impatient and discount their future payoffs using a common discount factor

δ ∈ (0,1). We assume that each agent receives the payoffs due both to the use and exchange

5Information structures where agents held complementary information about the state of the world and each
agent values the pieces of information possessed by others are considered, among others, by Hagenbach and
Koessler (2010), and Jiménez-Martínez (2006).

6Note that the bargaining in each linki j can be regarded as a “split-the-pie” game in which(qi j ,1−qi j ), with
q ji = 1−qi j , represents a possible division of the desirable pie.
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of information at the date at which the bargaining processeswith each of her neighbors ends.
One way to interpret this assumption is by considering that each agent needs to aggregate all
pieces of information gathered from her neighbors in order to be able to benefit from the use of
information.

Assumption 1. For a given networkg, each agenti ∈ N can only benefit from the use and the
exchange of information at the date in which the bargaining processes with all of her neighbors
finish.

The above assumption implies that an agent’s optimal bargaining decisions are related to
her relative position in the network. The agent cares about the date of agreement for each
of her neighbors and, therefore, her bargaining decisions for two different neighbors must be
correlated. Such a correlation depends on the number of her neighbors, on the number of
neighbors that each of her neighbors has, and so on.

Finally, note that in order to specify completely this game of pairwise negotiations for a
given network, one needs to label a first mover for each link inthe network. Specifically,
given a networkg, we partition each agenti’s set of neighbors,Ng

i , into two sets,Ng
i andN

g
i ,

whereNg
i denotes the set of agenti’s neighbors who are second movers relative to agenti and

N
g
i denotes the set of agenti’s neighbors who are first movers with respect to agenti. Let

Ng :=
{

Ng
i

}

i∈N andN
g

:=
{

N
g
i

}

i∈N so that the pairM(g) := (Ng,N
g
) completely describes a

distribution of the first-mover advantage associated with network g. We denote byΓM(g) the
game of pairwise negotiations that we have described for a given networkg whenM(g) is the
associated distribution of the first-mover advantage.

We introduce now formally the elements needed to specify final payoffs and to define equi-
librium. Let A andRbe two statements meaning, respectively, “Accept” and “Reject.” Consider
a networkg and a given linki j ∈ g, where agenti is chosen (without loss of generality) as the
first mover in the bargaining with agentj. A strategy for agent i with respect to her neighbor j
is an infinite sequence with the formsi j = (q1

i j ,y
2,q3

i j ,y
4, . . .), whereqt

i j ∈ [0,1] andyt ∈ {A,R}
for eacht ∈ T. In this case, a strategy for agentj respect to agenti is an infinite sequence with
the formsji = (y1,q2

i j ,y
3,q4

i j , . . .). Let si = (si j ) j∈Ng
i

be astrategyfor agenti and lets= (si)i∈N

be astrategy profile.
Let (si j ,sji)τ ∈R

2 be the pair of coordinates in theτ-th position of the strategy pair(si j ,sji).
If (si j ,sji)τ = (A,qτ

i j ), then the priceqτ
i j is accepted by agenti at dateτ. Analogously, if

(si j ,sji )τ = (qτ
i j ,A), then the priceqτ

i j is accepted by agentj at dateτ. Consider a strategy
pair (si j ,sji) and take a given datet < ∞. The acceptance date, starting from datet, in the
bargaining process between agentsi and j is given by

τ∗t (si j ,sji) := min
τ≥t

{

τ ≥ t : either(si j ,sji)τ = (A,qτ
i j ) or (si j ,sji)τ = (qτ

i j ,A)
}

.

Given Assumption 1, we are interested in the latest acceptance date for agenti across all her
neighbors in the network. Starting from datet, this latest acceptance date is

τ∗t (i,s) := max
j∈Ng

i

τ∗t (si j ,sji).

Note that the agreement datesτ∗t (si j ,sji) specified above may not exist for each datet and
each strategy profiles. This is the case when agentsi and j do not reach an agreement starting
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from datet. If there is no agreement between agenti and one of her neighbors, the latest
acceptance dateτ∗t (i,s) does not exist either. In this case, we writeτ∗t (i,s) = ∞.

For a strategy profiles, let ug
i, t(s) be the value at timet of the discounted aggregate payoff

to agenti due to her bargaining with her neighbors in networkg. We assume thatug
i, t(s) = 0 if

τ∗t (i,s) = ∞. The interpretation is that agenti receives a zero payoff at a given date if she does
not reach an agreement with any of her neighbors from that date onwards. If, instead,τ∗t (i,s) is a
finite integer, then agenti exchanges her endowment of information with each of her neighbors,
and obtains her payoffs both from the use and the exchange of information. Thus,

ug
i,t(s) :=

{

0 if τ∗t (i,s) = ∞,

δ τ∗t (i,s)−t
(

vg
i +∑k∈Ng

i
r i(qik)+∑l∈Ng

i
r i(qli)

)

if t ≤ τ∗t (i,s)< ∞.
(3)

Note that, for a strategy profiles, the final payoff to agenti in the gameΓM(g) is given byug
i,1(s).

Then, let us simply writeug
i (s) = ug

i,1(s) to ease notation.

Definition 1. Given a networkg and a distribution of the first-mover advantageM(g) for that
network, asubgame perfect Nash equilibrium (SPE)of the gameΓM(g) is a strategy profiles∗

such that for each agenti ∈ N and each datet ∈ T, we haveug
i,t(s

∗)≥ ug
i,t(si,s∗−i) for eachsi .

3. Main Results

As shown by Rubinstein (Conclusion 2, 1982), the bargaininggame corresponding to each
pair of linked agents has a unique subgame perfect equilibrium in which the reference agent
proposes a certain price and her opponent accepts it in the first date. This price is characterized
by a pair of equations which reflect intertemporal indifference requirements for each of the
agents. Consider a networkg and suppose that agenti is the first mover in the linki j ∈ g. Then,
the indifference condition for agenti between exchanging her endowment at priceq∗i j in period
t = 2 or at price ˜qi j in periodt = 1 is

δ



vg
i + r i(q

∗
i j )+ ∑

k∈Ng
i \{ j}

r i(q
∗
ik)+ ∑

l∈Ng
i

r i(q
∗
li)



= vg
i + r i(q̃i j )+ ∑

k∈Ng
i \{ j}

r i(q
∗
ik)+ ∑

l∈Ng
i

r i(q
∗
li),

and the indifference condition for agentj between exchanging her endowment at price ˜qi j in
periodt = 2 or at priceq∗i j in periodt = 1 is

δ



vg
j + r j(q̃i j )+ ∑

k∈Ng
j

r j(q
∗
jk)+ ∑

l∈Ng
j \{i}

r j(q
∗
l j )



= vg
j + r j(q

∗
i j )+ ∑

k∈Ng
j

r j(q
∗
jk)+ ∑

l∈Ng
j\{i}

r j(q
∗
l j ).

Since an agreement is reached att = 1 in equilibrium, we can use the two indifference require-
ments above, together with the implicationr i(q̃i j ) = −r j(q̃i j ) and the definition of payoffs in
(3), to obtain that, ifs∗ is a SPE ofΓM(g), thenug

i (s
∗) = (1/δ )ug

j (s
∗). Thus, independent of

the networkg and of the distribution of the first-mover advantageM(g), in each given link, the
first mover extracts a surplus of the second mover, exactly inthe same way as in the Rubin-
stein’s (1982) negotiation model with only two agents. Thisimplication is intuitive since the
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two agents who negotiate in a given link take as independently given the rest of negotiation
processes in which they are involved.

Nevertheless, given Assumption 1, an agent cares, in the overall game, about the negotiation
processes with all her neighbors in the network. As a consequence, her optimal strategy depends
on her position in the network. In short, equilibrium pricesand payoffs are affected by the
distribution of the first-mover advantage which, in turn, isconditioned by the network structure.
Since bargaining processes are independent across pairs oflinked agents, the SPE of our game
ΓM(g) is characterized by a system of linear equations which is related both to the structure of
the networkg and to the distribution of the first-mover advantageM(g). For a general network
g, this system of equations can be expressed asA ·q= b, whereq denotes a price vector, andA
andb are, respectively, a matrix and a vector of constants which depend ong and on the chosen
M(g). The size of this system is given by the number of links in network g. If A ·q = b has
some solutionq∗, then it corresponds to the price vector associated to a SPE in pure strategies
of ΓM(g).

7 We show that the systems of equations associated to the star and the line (for some
meaningful specifications ofM(g)) have a unique solution, which implies uniqueness of the
SPE for the corresponding games.

The following proposition characterizes equilibrium prices and payoffs for the star network
for two extreme cases: (a) each of the peripheral agents is first mover in her link, and (b) the
central agent is first mover with respect to each of the peripheral agents.

Proposition 1. Consider the star network given by gS = {12,13, . . . ,1n}. Suppose that either
each of the peripheral agents is first mover in her link, i.e.,NgS

j = {1} for each j∈ {2,3, . . . ,n},
or the central agent is first mover with respect to each of the peripheral agents, i.e., NgS

1 =
{2,3, . . . ,n}. Then, under Assumption 1, the gameΓM(gS) has a unique SPE where the prices
and the payoffs are given, respectively, by:
(a) for NgS

j = {1} for each j∈ {2,3, . . . ,n},

q∗j1 =
1−vgS

j

2
+

VgS

2(n−1+δ )
,

ugS
1 (s∗) =

[

δ
n−1+δ

]

VgS, and ugS
j (s

∗) =

[

1
n−1+δ

]

VgS for each j∈ {2,3, . . . ,n};

(b) for NgS
1 = {2,3, . . . ,n},

q∗∗1 j = 1−

(

1−vgS
j

2
+

δVgS

2[1+(n−1)δ ]

)

,

ugS
1 (s∗∗) =

[

1
1+(n−1)δ

]

VgS, and ugS
j (s

∗∗) =

[

δ
1+(n−1)δ

]

VgS for each j∈ {2,3, . . . ,n}.

Thus, a first proposer obtains a surplus from each of her neighbors. In particular, the payoff
gain to any agent for each link in which she moves from proposing second to proposing first
is (1− δ )VgS/(1+ δ ). It follows that the agent with the highest centrality is able to extract

7Notice that the systemA·q= b does not have a solution when the matrixA is singular. In this case, there is no
SPE ofΓM(g) in pure strategies. For example, such a situation emerges when one considers a wheel network and a
distribution of the first-mover advantage in which each agent is first mover relative to her immediate successor.
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the highest surplus possible in this network when she enjoysthe first-mover advantage with
respect to each of the peripheral agents. The star network and the two distributions of the first-
mover advantage studied in Proposition 1 do not allow for theadvantage of a first mover to be
transmitted across indirectly connected agents.

Can a network facilitate the propagation of the relative initial bargaining power of a first
mover through indirect connections? The next proposition shows that the answer is affirmative
and that this sort of propagation of the first-mover advantage affects equilibrium prices. Specif-
ically, we consider that the agents are connected along a line in which they are ordered from left
to right, and each agent is first mover relative to her immediate successor in the line according
to this order.8 Under this distribution of the first-mover advantage, all agents, except those at
the two ends of the line, are symmetric with respect to their initial bargaining power (i.e., each
of them is first mover relative to one neighbor and second mover relative to the other neighbor).

Proposition 2. Consider the line network given by gL = {12,23, . . . ,(n−1)n}. Suppose that,
for each i∈ {2,3, . . . ,n−1}, we have NgL

i = {i −1} andN
gL
i = {i +1}. Then, under Assump-

tion 1, the gameΓM(gL) has a unique SPE such that each agent i∈ {1, . . . ,n−1} charges a
price

q∗i(i+1) =
1
2
+

∑n
k=i+1vgL

k ∑i−1
j=0δ j −∑i

k=1vgL
k ∑n−1

j=i δ j

2∑n−1
j=0 δ j

to each neighbor i+1 along the line. Moreover, in this SPE, each agent i’s payoff is given by

ugL
i (s∗) = δ i−1

(

1−δ
1−δ n

)

VgL .

Thus, each agent benefits not only from her position relativeto her immediate successor but
also from the position of the indirectly connected agents who are located at her right-hand side.
Each agent extracts a surplus from the benefits that her neighbor enjoys from her own neighbor,
and so on. Indirect connections play a key role in the equilibrium prices and payoffs.

4. Concluding Comments

While equilibrium shares depend crucially on the distribution of the first-mover advantage,
the network describes the different ways in which the first-mover advantage can be distributed
among the agents. In this sense, the network provides restrictions, as well as some degree of
flexibility, over the bargaining processes that determine prices. For the star, we have intention-
ally distributed the first-mover advantage in a way such thatindirect connections are irrelevant.
Otherwise, it is easy to show that the gain from proposing first propagates through the indirectly
linked agents along that path in the star, exactly as it does in the line. For the line, one could
propose situations in which some agents in the line do not propose first in any of the links in
which they are included. It would be interesting to analyze the equilibrium prices and payoffs
in these cases.

Finally, starting with a model of bilateral negotiations between directly connected agents,
one could possibly add a variety of more o less complex mechanisms through which the network

8Of course, the results in Proposition 2 continue to hold qualitatively if we reverse this order.
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can influence equilibrium prices and payoffs. Perhaps, under some mechanisms, the initial
advantage that a first mover has with respect to a neighbor could even be affected by the structure
of the network. Of course, this would provide us with a model that relates the network structure
to prices and payoffs. This note can be rather viewed as an attempt to use a very simple protocol
(in which, for each given link, nothing goes beyond the insights provided by Rubinstein, 1982)
to study carefully how the network structure can influence prices and payoffs, provided that the
agents benefit from bargaining only when all their negotiation processes finish.

Appendix

Proof of Proposition 1. Consider the star networkgS = {12,13, . . . ,1n} and fix a given link
1 j ∈ gS.
(a) Suppose that the peripheral agentj is the first mover with respect to the central agent 1.
Then, equation

δ
(

vgS
j + r j(q

∗
j1)
)

= vgS
j + r j(q̃ j1) (4)

represents the indifference condition for agentj between trading her endowment of information
with agent 1 at priceq∗j1 in period t = 2 or at q̃ j1 price in periodt = 1. On the other hand,
equation

δ

(

vgS
1 + r1(q̃ j1)+ ∑

k6=1, j

r1(q
∗
k1)

)

= vgS
1 + r1(q

∗
j1)+ ∑

k6=1, j

r1(q
∗
k1) (5)

represents the indifference condition for agent 1 between exchanging her endowment of infor-
mation with agentj at priceq̃ j1 in periodt = 2 or at priceq∗j1 in periodt = 1. Consider the
pricesq∗k1, for k 6= 1, j, as exogenously given for the moment. By applying the expressions for
agents’ revenue in (1) and (2) to agents 1 andj, and by substituting price ˜q j1 from equation (4)
into equation (5), we obtain

(1+δ )q∗j1+ ∑
k6=1, j

q∗k1 =
vgS

1 −δvgS
j +n−1+δ

2
.

Now, consider simultaneously the bargaining processes forall links 1j, j 6= 1. Then, we
obtainn−1 equations as the one above, one equation for eachj 6= 1. This gives us a linear
system whose solutions are the pricesq∗j1, j 6= 1. Using matrix notation, we can be rewrite this
system asA ·q∗ = b, where

A=











(1+δ ) 1 . . . 1
1 (1+δ ) . . . 1
...

...
...

...
1 1 . . . (1+δ )











, q∗ =











q∗21
q∗31
...

q∗n1











,

and

b=
1
2











vgS
1 −δvgS

2 +n−1+δ
vgS

1 −δvgS
3 +n−1+δ

...
vgS

1 −δvgS
n +n−1+δ











.
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Each bilateral bargaining process within the star network corresponds to an infinite-horizon
alternating-offers process between two agents. Then, the existence of a unique solution to the
systemA ·q∗ = b above implies Rubinstein’s (1982) conditions for the existence of a SPE for
the collection of all bilateral alternating offers processes within the network. Application of
Cramer’s rule gives us

q∗j1 =
1−vgS

j

2
+

∑n
k=1vgS

k

2(n−1+δ )
.

By using the expression for payoffs in equation (3), we obtain that, in this SPE, the payoff to
agent 1 is

ugS
1 (s∗) =

[

δ
n−1+δ

] n

∑
k=1

vgS
k ,

and the payoff to each peripheral agentj ∈ {2,3, . . . ,n} is

ugS
j (s

∗) =

[

1
n−1+δ

] n

∑
k=1

vgS
k .

(b) Suppose that the central agent 1 is first mover with respect to the peripheral agentj. Then,
equation

vgS
1 + r1(q̃1 j)+ ∑

k6=1, j

r1(q
∗∗
1k) = δ

(

vgS
1 + r1(q

∗∗
1 j )+ ∑

k6=1, j

r1(q
∗∗
1k)

)

(6)

represents the indifference condition for agent 1 between exchanging her endowment of infor-
mation with agentj at priceq̃1 j in periodt = 2 or at priceq∗∗1 j in periodt = 1. Consider the
pricesq∗∗1k, for k 6= 1, j, as exogenously given for the moment. Also, equation

vgS
j + r j(q

∗∗
1 j ) = δ

(

vgS
j + r j(q̃1 j)

)

(7)

represents the indifference condition for agentj between trading her endowment of information
with agent 1 at priceq∗∗1 j in period t = 2 or at q̃1 j price in periodt = 1. By applying the
expressions for agents’ revenue in (1) and (2) to agents 1 andj, and by substituting price ˜q1 j

from equation (7) into equation (6), we obtain

(1+δ )q∗∗1 j +δ ∑
k6=1, j

q∗∗1k =
−δvgS

1 +vgS
j +1+(n−1)δ

2
.

Now, consider simultaneously the bargaining processes forall links 1j, j 6= 1. Then, we
obtainn−1 equations as the one above, one equation for eachj 6= 1. This gives us a linear
system whose solutions are the pricesq∗∗j1, j 6= 1. Using matrix notation, we can rewrite this
system asA ·q∗∗ = b, where

A=











(1+δ ) δ . . . δ
δ (1+δ ) . . . δ
...

...
. . .

...
δ δ . . . (1+δ )











, q∗∗ =











q∗∗21
q∗∗31
...

q∗∗n1











,
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and

b=
1
2











−δvgS
1 +vgS

2 +1+(n−1)δ
−δvgS

1 +vgS
3 +1+(n−1)δ

...
−δvgS

1 +vgS
n +1+(n−1)δ











.

Each bilateral bargaining process within the star network corresponds to an infinite-horizon
alternating-offers process between two agents. Then, the existence of a unique solution to the
systemA ·q∗∗ = b above implies Rubinstein’s (1982) conditions for the existence of a SPE for
the collection of all bilateral alternating offers processes within the network. Application of
Cramer’s rule gives us

q∗∗1 j =
1+vgS

j

2
−

δ ∑n
k=1vgS

k

2[1+(n−1)δ ]
= 1−

(

1−vgS
j

2
+

δ ∑n
k=1vgS

k

2[1+(n−1)δ ]

)

.

By using the expression for payoffs in equation (3), we obtain that, in this SPE, the payoff to
agent 1 is

ugS
1 (s∗∗) =

[

1
1+(n−1)δ

] n

∑
k=1

vgS
k ,

and the payoff to each peripheral agentj ∈ {2, . . . ,n} is

ugS
j (s

∗∗) =

[

δ
1+(n−1)δ

] n

∑
k=1

vgS
k ,

as stated.

Proof of Proposition 2. Consider the line networkgL = {12,23, . . . ,(n−1)n}. Fix link 12 and
suppose that agent 1 is first mover with respect to agent 2. Then, equation

δ
(

vgL
1 + r1(q

∗
12)
)

= vgL
1 + r1(q̃12) (8)

gives us the indifference condition for agent 1 between exchanging her endowment of infor-
mation with agent 1 at priceq∗12 in periodt = 2 or at price ˜q12 in periodt = 1. Analogously,
equation

δ
(

vgL
2 + r2(q̃12)+ r2(q

∗
23)
)

= vgL
2 + r2(q

∗
12)+ r2(q

∗
23) (9)

specifies the indifference condition for agent 2 between exchanging her endowment of infor-
mation with agent 1 at price ˜q12 in periodt = 2 or at priceq∗12 in periodt = 1. Take priceq∗23
as exogenously given for the moment. By applying the expressions for agents’ revenue in (1)
and (2) to agents 1 and 2, and by substituting price ˜q12 from equation (8) into equation (9), we
obtain

(1+δ )q∗12−q∗23 =
vgL

2 −δvgL
1 +δ

2
.

Now, fix a link i(i + 1), connecting agents who are not at the ends of the line, i.e.,i ∈
{2, . . . ,n−2}, and suppose that agenti is second mover with respect to agenti − 1 and first
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mover with respect to agenti + 1. Suppose for the moment that the bargaining prices corre-
sponding to any other link are exogenously given. By proceeding analogously as done above
for link 12, we obtain

−δq∗(i−1)i +(1+δ )q∗i(i+1)−q∗(i+1)(i+2) =
vgL

i+1−δvgL
i

2
.

Finally, by doing the analogous computations for link(n−1)n, we obtain

−δq∗(n−2)(n−1)+(1+δ )q∗(n−1)n =
vgL

n −δvgL
n−1+1

2
.

Now, consider simultaneously the bargaining processes across all linksi(i+1), i ∈{1, . . . ,n−1},
in the network. Then, we obtain a linear system ofn−1 equations withn−1 unknowns,q∗i(i+1),
i ∈ {1, . . . ,n−1}. All prices are simultaneously obtained by solving this linear system. Using
matrix notation, this system can be expressed asA ·q∗ = b, where

A=



















(1+δ ) −1 0 . . . 0 0
−δ (1+δ ) −1 . . . 0 0
0 −δ (1+δ ) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . (1+δ ) −1
0 0 0 . . . −δ (1+δ )



















, q∗ =



















q∗12
q∗23
q∗34
...

q∗(n−2)(n−1)
q∗(n−1)n



















,

and

b=
1
2



















vgL
2 −δvgL

1 +δ
vgL

3 −δvgL
2

vgL
4 −δvgL

3
...

vgL
n−1−δvgL

n−2
vgL

n −δvgL
n−1+1



















.

Each bilateral bargaining process within the line network corresponds to an infinite-horizon
alternating-offers process between two agents. Then, the existence of a unique solution to the
systemA ·q∗ = b above implies Rubinstein’s (1982) conditions for the existence of a PBE for
the collection of all bilateral alternating offers processes within the network.

Application of Cramer’s rule gives us

q∗i(i+1) =
1
2
+

∑n
k=i+1vgL

k ∑i−1
j=0 δ j −∑i

k=1vgL
k ∑n−1

j=i δ j

2∑n−1
j=0 δ j

.

By using the expression for payoffs in equation (3), we obtain that, in this PBE, the payoff to
each agenti ∈ 1, . . . ,n is given by

ugL
i (s∗) =

[

δ i−1

∑n−1
j=0 δ j

]

n

∑
k=1

vgL
k = δ i−1

(

1−δ
1−δ n

)

VgL ,

as stated.
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