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1. Introduction

Both feasible generalized least squares (GLS) and maximum-likelihood estimation of the regres-
sion parameters in the two-way error-components model rely on calculating the inverse of the error
variance-covariance matrix. Since that matrix can be quite large, the practicality, therefore, of both
feasible GLS and maximum-likelihood would be signi�cantly diminished in the absence of ef�-
cient methods for calculating the inverse. Ef�cient computation of the inverse for the balanced
panel data case has been known for some time (see, e.g., Fuller and Battese 1974; Nerlove 1971a;
Wallace and Hussain 1969). However, for the unbalanced, or incomplete, panel data case, it was
not until Wansbeek and Kapteyn's (1989) paper that an ef�cient method for computing the inverse
was found.
Wansbeek and Kapteyn's (1989) solution relied on an analytical expression for the inverse that

required inverting numerically only a T � T matrix, where T is the total number of time periods
observed. To obtain this solution, Wansbeek and Kapteyn (1989) arranged the observations so that
the time index ran slowly while the cross section index ran fast; that is, cross sections observed
in the �rst year were stacked on top of cross sections observed in the second year, and so on.
This arrangement of panel observations has subsequently been adopted in the literature on the
unbalanced two-way error-components model (see, e.g., Baltagi et al. 2002, and Phillips 2012).
However, arranging the observations as �rst suggested by Wansbeek and Kapteyn (1989) ob-

scures the time-series structure of the panel. Obscuring this time-series structure is unimportant
for the case considered by Wansbeek and Kapteyn (1989). That paper focused on the case in which
the error components are all uncorrelated.1 But in order to analyze more general time-series struc-
tures, it simpli�es the analysis if the panel is arranged so that the time-series for one cross section
is stacked on top of the time series for the next cross section, and so on.
This note shows that, if cross-sectional time series are stacked one on top of another, then it

is still possible to invert the error variance-covariance matrix for an incomplete panel by inverting
numerically matrices that are no larger than T � T . The note thus provides a result analogous to
the result Wansbeek and Kapteyn (1989) obtained, but the result provided here is for how panel
data are usually analyzed, which allows for a uni�ed treatment of the incomplete and complete
panel cases. Moreover, an important advantage of this approach is that it also facilitates analyzing
time-series models with correlated error components. To illustrate this point, I derive the main
result in the note allowing the regression disturbances for each cross section to have an arbitrary
variance-covariance matrix, and then I consider in detail the case where the time-series for cross
sections do not all start and end at the same time and the disturbances are generated by a �rst-
order autoregressive (AR(1)) process. The note concludes with an example which illustrates the
potentially dramatic improvements in computing speed made possible by the main result in the
note.

1Davis (2002) studied a more general error-components model than the model considered in Wansbeek and
Kapteyn (1989). However, like Wansbeek and Kapteyn (1989), Davis (2002) assumed the error components are
all uncorrelated, with each other and among themselves. Moreover, Baltagi et al. (2002) and Phillips (2012) also
focused on the case of uncorrelated error components. On the other hand, for the balanced panel data case, Karlsson
and Skoglund (2004) studied the two-way error-components model with correlated time effects.
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2. The model

The model studied in this note is

yi t D �C x0i t� Cw
0
i�C ui t (1)

with a composite regression error ui t D aiC� tCvi t . Here xi t is a Kx�1 matrix of regressors that
vary with t and possibly i ;wi is a Kw � 1 vector of time-invariant regressors; � and � are vectors
of unobserved parameters; ai and � t are unobserved cross-sectional and time speci�c effects; and
vi t will be referred to as a disturbance term.
Let Ti denote the number of observations on the i th cross section, which may be strictly less

than T , the total number of time periods. The �rst observation on a given cross section may
not correspond to the �rst year for which there is data for other cross sections, nor need the last
observation for that cross section correspond to the last year. Moreover, for a given cross section,
there may be missing years between two observations.
Next, let yi denote the Ti � 1 vector of observations on yi t ordered from smallest to largest t ,

and let X i be the corresponding Ti � K matrix of observations on x0i t . De�ne the Ti � 1 vector
of disturbances, vi , analogously. Moreover, set y D .y01; : : : ;y

0
N /
0, X D .X 0

1; : : :X
0
N /
0, and

v D .v01; : : : ;v
0
N /
0. Finally, letW D .w1; : : : ;wN /0; a D .a1; : : : ; aN /0 and � D .� 1; : : : ; � T /0;

�n is an n�1 vector of ones with n denoting the number of observations;11 D diag.�T1; : : : ; �TN /;
and 12 D .D0

1; : : : ;D
0
N /
0, where Di is a Ti � T matrix constructed by deleting the rows of the

T � T identity matrix corresponding to those time periods not observed for the i th cross section.
Using these de�nitions, the model can be written as

y D �n�CX� C11W�C u;

where u D 11aC12� C v.
Let � 2� D E.uu0jX;W /. It is assumed that � D 6 C �a111

0
1 C ��121

0
2, where �a D

� 2a=�
2, and �� D � 2�=�

2. Also assume that vi and v j are independent for i 6D j . Then 6 D
diag.6T1; : : : ; 6TN /, where � 26Ti D E.viv0i jX;W /.

3. A lemma

Wansbeek and Kapteyn (1989) showed how to calculate the inverse of the error variance-covariance
matrix by inverting only a T � T matrix numerically. They obtained their result by assuming the
error components are all uncorrelated and by stacking the observations for the �rst year on top
of the observations for the second year, and so on. Alternatively, Lemma 1 shows one can allow
for correlated and heteroskedastic vi ts and arrange the sample observations as a time series (with
possibly missing cases) for each cross section, and then the time series for the �rst cross section is
stacked on top of the time series for the second, and so on.

Lemma 1. Let C D 6�1 � �a6
�11171

0
16

�1, where 7 D diag.�T1; : : : ; �TN /, and �Ti D�
1C �a�0Ti6

�1
Ti �T i

��1
. Then

��1 D C � ��C12.IT C ��1
0
2C12/

�1102C: (2)
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The proof is provided in the appendix.
According to Lemma 1, ��1 can be calculated by calculating the inverses 6�1 and�

IT C ��1
0
2C12

��1. The matrix 6�1 is block-diagonal, with diagonal blocks 6�1Ti (i D
1; : : : ; N ), all of which are no larger than the T � T matrix IT C ��102C12.
Moreover, for several well-known time-series models there is a known Ti �Ti matrix P Ti such

that P 0TiP Ti D 6
�1
Ti . The simplest case is when, for each cross section, the vi ts are generated by

a stationary AR(1) process, with autocorrelation coef�cient �, and there are no gaps in the time
series. When there are no gaps in the time series, the time series for cross sections may differ in
when they start and end, but there are no missing years between two consecutive observations. This
restriction rules out some applications, but it still captures many, such as panels where individuals
attrit, or panels where the data for some countries do not extend as far back in time as others, or
rotating panels, and so on. When there are no gaps in the time series, the Ti � Ti matrix P Ti is the
Prais-Winsten transformation matrix

P Ti D

26664
p
1� �2 0 � � � 0
�� 1
:::

: : :
: : : 0

0 � � � �� 1

37775 : (3)

Now let P D diag.P T1; : : : ;P TN /. Then, in this case,

C D P 0
�
In � �aP1171

0
1P

0�P (4)

and
�Ti D

�
1C �a�0TiP

0
TiP Ti �T i

��1
:2 (5)

The AR(1) model without gaps in any of the time series is not the only case for which there is
a known matrix P Ti satisfying P

0
TiP Ti D 6�1Ti . Baltagi and Wu (1999) provide the P Ti matrix

for the AR(1) model with time series gaps. For the P Ti matrix for the MA(1) model, the AR(2)
model, and the AR(4) model for quarterly data, all without gaps in the time series, see Balestra
(1980), Lempers and Kloek (1973), and Thomas and Wallis (1971), respectively. For any of these
cases, we can set P D diag.P T1; : : : ;P TN /, and calculate C and �Ti as in (4) and (5).
Lemma 1 increases computing speed by reducing the size of the matrices that are multiplied

and inverted. To see this, let Z D .�n; X , 11W /, and consider that computing the GLS estimate�
Z 0��1Z

��1
Z 0��1y directly involves matrix multiplication and inversion of matrices that can, in

some applications, be quite large. Lemma 1, on the other hand, allows us to replace the operations
on these large matrices with sums, the terms of which involve operations on much smaller matrices.
To see this result, consider the evaluation ofZ 0��1Z. From formulas (2), (4), (5), and straight-

forward calculations we get

Z 0��1Z D SZ Z � ��SZ12.IT C ��S1212/
�1S12Z ; (6)

2For the AR(1) model, �Ti simpli�es to �Ti D
�
1C �a

�
1� �2 C .Ti � 1/ .1� �/2

�	�1.
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where

SZ Z D
NX
iD1
Z 0iP

0
Ti
�
ITi � �a�TiP TiJTiP

0
Ti
�
P TiZ i ;

SZ12 D
NX
iD1
Z 0iP

0
Ti
�
ITi � �a�TiP TiJTiP

0
Ti
�
P TiDi ;

S1212 D
NX
iD1
D0
iP

0
Ti
�
ITi � �a�TiP TiJTiP

0
Ti
�
P TiDi ;

JTi D �T i�
0
T i , and S12Z D S

0
Z12 . Similarly,

Z 0��1y D SZy � ��SZ12.IT C ��S1212/
�1S12y; (7)

where

SZy D
NX
iD1
Z 0iP

0
Ti
�
ITi � �a�TiP TiJTiP

0
Ti
�
P Tiyi ;

S12y D
NX
iD1
D0
iP

0
Ti
�
ITi � �a�TiP TiJTiP

0
Ti
�
P Tiyi :

To get a sense of how much the formula on the right-hand side of (6) speeds up computations,
note that, although the sums SZ Z , SZ12 , and S1212 each have N terms, the dimensions of the
matrices in these sums do not depend on N , nor does the dimension of IT C ��S1212 . Thus, for
a given T , if we use the formula on the right-hand side of (6) to calculate Z 0��1Z, the number
of arithmetical operations increases with N at the same rate N increases. On the other hand, the
number of arithmetical operations required just to invert � increases with N at a much faster rate
than the rate at which N increases.3 This is easiest to see in the balanced panel case, that is, when
Ti D T (i D 1; : : : ; N ). In this case, for given T , the number of arithmetical operations required
to invert � increases with N at a rate on the order of N �, with � no smaller than two.4

4. An example

In order to illustrate the gains in computing speed afforded by exploiting Lemma 1, I generated
samples of explanatory values and calculatedZ 0��1Z both by exploiting the formula on the right-
hand side of (6) and by calculatingZ 0��1Z directly. Since the focus here is on computation rather
than estimation, the values of �a and �� were taken to be known and were both set to one. For
P Ti , the Prais-Winsten transformation matrix in (3) was used with � D 0:5.

3Similar observations apply for computing Z 0��1y.
4This follows from the fact that the number of arithmetical operations required to invert � is of order n� . Thus, if

Ti D T , for all i , and consequently n� D N �T � , the number of arithmetical operations required to invert � increases
with N at a rate on the order of N � . As for the size of �, the best lower bound is two (see Pan 1984, p. 1).
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Table 1: Ratios of computing times (fast over slow)

T D 10 T D 50

N 10 50 100 500 10 50 100 500

Ratio 0:2738 0:0348 0:0090 4:1� 10�4 0:1402 0:0099 0:0026 9:4� 10�5

Regressor values were generated using a model similar to that used by Nerlove (1971b). Specif-
ically, I set

xi t D 0:1t C 0:5xi;t�1 C !i t ; .t D 1; : : : ; Ti , i D 1; : : : ; N ),

where the !i ts were generated independently as uniform variates over the interval .�0:5; 0:5/, and
xi0 D 5C 10!i0. The t th row of Z i was set equal to .1; xi t/ .t D 1; : : : ; Ti , i D 1; : : : ; N ).
Several different .T; N / combinations were considered, where T is the maximum number of

observed time periods and N is the total number of cross sections. For the .T; N / combinations,
I set N equal to 10, 50, 100, and 500, for T D 10 and T D 50. Moreover, the panels were
unbalanced. Speci�cally, for each sample, Ti was set as Ti D T=2; for i D 1; : : : ; N=2; and
Ti D T; for i D N=2C 1; : : : ; N . Hence, for the smallest and largest samples, the total number of
observations, n, was 75 and 18,750.
For each sample, the time required to calculate Z 0��1Z with and without taking advantage of

Lemma 1 was recorded. Table 1 gives the ratio of the time required to calculateZ 0��1Z using the
formula on the right-hand side of (6) over the time required to calculate Z 0��1Z by computing
the inverse of �, postmultiplying ��1 by Z, and premultiplying by Z 0.5
Consistent with the observations at the end of Section 3, the bene�ts of applying Lemma 1 to

calculateZ 0��1Z depended on the size of the matrices involved, with the relative speed increasing
with the size of the matrices. Indeed, for the case in which the matrices � and Z were largest
(T D 50, N D 500), applying Lemma 1 produced an algorithm that was over 10,600 times faster
than an algorithm consisting of simply inverting �, postmultiplying by Z, and premultiplying by
Z 0.

Appendix: Proof of Lemma 1

Eq. (2) follows from the identity

.ACUBV /�1 D A�1 �A�1U
�
I CBV A�1U

��1
BV A�1 (8)

5All computations were performed using GAUSS on a MacBook Pro. Computing time was estimated elapsed time.
The GAUSS command �hsec� was used to calculate the number of hundredths of a second since midnight before and
after calculations were executed. The difference between these two times was the estimated elapsed time.
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(see Henderson and Searle 1981). Set A D 6 C �a111
0
1, U D V 0 D 12, and B D �� . Then,

according to Eq. (8),

��1 D
�
6 C �a111

0
1 C ��121

0
2
��1

D A�1 � ��A
�112

�
IT C ��1

0
2A

�112

��1
102A

�1:

Moreover, we can evaluateA�1 using (8) again:

A�1 D 6�1 � �a6
�111

�
IN C �a1

0
16

�111

��1
1016

�1:

Finally, straightforward calculations give that
�
IN C �a1

0
16

�111
��1

D 7 . Collecting the pro-
ceeding observations establishes Eq. (2).
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