

Volume 32, Issue 2

Preemption and rent equalization in the adoption of new technology: comment

Min-Hung Tsay

Department of International Business, National Taiwan University, Taipei 106, Taiwan.

Abstract

In this comment, we show that the existence of the preemption equilibrium in Fudenberg and Tirole (Review of Economics Studies, vol. 52, PP. 383-401, 1985)'s continuous-time games of timing is not guaranteed under their assumptions.

I would like to thank Professors Drew Fudenberg, Hsin-Chang Lu, Chun-Hsien Yeh, Timothy Van Zandt (associate editor) and an anonymous referee for helpful discussions and comments, especially to Professor Fudenberg. Without his encouragement, this comment would never be carried out. I am also greatly thankful to Professors Chun-Hsien Yeh and Hsin-Chang Lu for guiding and supportinge over the years. I of course remain responsible for any remaining errors.

Citation: Min-Hung Tsay, (2012) "Preemption and rent equalization in the adoption of new technology: comment", *Economics Bulletin*, Vol. 32 No. 2 pp. 1680-1686.

Contact: Min-Hung Tsay - tsaymh@gmail.com.

Submitted: October 02, 2011. Published: June 10, 2012.

1. Comment

We direct this comment to the paper by Fudenberg and Tirole (1985). The authors develop a new framework for modeling continuous-time games of timing, and show that in a duopoly, the threat of preemption in the adoption of new technology will equalize two firms' rents. The results of preemption and rent equalization have been adopted by a number of papers: Fudenberg and Tirole (1987), Tirole (1988), Choi (1996), Weeds (2002), Adner and Zemsky (2005), Ostrovsky and Schwarz (2005), Honoré and Paula (2010), and Shen and Villas-Boas (2010). However, by constructing a counterexample, we show that the existence of the *preemption equilibrium* is not guaranteed under Assumptions 1 and 2 in their paper.

We adopt Fudenberg and Tirole (1985)'s notation throughout our comments, and consider the following duopoly case of the model. Two identical firms, denoted by firm 1 and firm 2, exist in the industry. At time 0, a cost reducing innovation is announced. For $i \in \{1, 2\}$, let $\pi_0(m)$ be the net cash flow of firm *i* when *m* firm(s) have adopted the innovation, but firm *i* has not. Let $\pi_1(m)$ be firm *i*'s net cash flow when *m* firm(s) including *i* have adopted. T_i denotes firm *i*'s adoption date; and c(t) is the present value of the cost of implementing the innovation on line by time *t*. Without loss of generality, suppose that firm *i* is the *i*-th to adopt, then we can represent firm *i*'s payoff, $V^i(T_i, T_i)$, as follows.

$$V^{i}(T_{i},T_{j}) = \begin{cases} \int_{0}^{T_{i}} \pi_{0}(0)e^{-rt}dt + \int_{T_{i}}^{T_{j}} \pi_{1}(1)e^{-rt}dt + \int_{T_{j}}^{\infty} \pi_{1}(2)e^{-rt}dt - c(T_{i}) & \text{if } T_{i} \leq T_{j}; \\ \int_{0}^{T_{j}} \pi_{0}(0)e^{-rt}dt + \int_{T_{j}}^{T_{i}} \pi_{0}(1)e^{-rt}dt + \int_{T_{i}}^{\infty} \pi_{1}(2)e^{-rt}dt - c(T_{i}) & \text{if } T_{i} > T_{j}, \end{cases}$$
(1)

where $j \in \{1, 2\}$ and $j \neq i$, and r is the constant common interest rate.

We next introduce the duopoly version of the two assumptions they impose on the firm's net cash flow and adoption cost of the innovation.

Assumption 1.

- (i) $\pi_0(0) \ge \pi_0(1) > 0$ and $\pi_1(1) \ge \pi_1(2) > 0$, and
- (ii) $\pi_1(1) \pi_0(0) > \pi_1(2) \pi_0(1)$.

Assumption 2.

- (i) $\pi_1(1) \pi_0(1) \le -c'(0)$.
- (ii) $\inf_{t\geq 0} \{c(t)e^{rt}\} < [\pi_1(2) \pi_0(1)]/r_{1684}$

(iii) For all
$$t \ge 0$$
, $(c(t)e^{rt})' < 0$ and $(c(t)e^{rt})'' > 0$.

Based on these two assumptions, we define the adoption dates $T_1^* < T_2^*$ to be the solutions of the following first-order conditions: for m = 1, 2,

$$[\pi_1(m) - \pi_0(m-1)] e^{-rT_m^*} + c'(T_m^*) = 0.$$

Moreover, we define¹

$$L(t) = \begin{cases} V(t, T_2^*) & \text{if } t < T_2^*; \\ V(t, t) & \text{if } t \ge T_2^*, \end{cases}$$

and

$$F(t) = \begin{cases} V(T_2^*, t) & \text{if } t < T_2^*; \\ V(t, t) & \text{if } t \ge T_2^*, \end{cases}$$

to be the leader's and the follower's payoffs, respectively, when the former preempts the latter at time t, and let M(t) = V(t,t) be the payoff of both firms when they adopt together at time t. Finally, let $\hat{T}_2 = \operatorname{argmax}_{t \in \mathbb{R}_+} M(t)$.

Under Assumptions 1 and 2, the authors offer a necessary condition for the existence of the (T_1, T_2^*) -diffusion equilibrium² (i.e., there exists a unique preemption time T_1 in $(0, T_1^*)$ such that $L(T_1) = F(T_1))^3$, and then show in their Proposition 2 that the (T_1, T_2^*) -diffusion equilibrium always exists.⁴ We show that under Assumptions 1 and 2, the existence of T_1 is not guaranteed by constructing a numerical example.

The counterexample. Let $\theta, r, k \in \mathbb{R}_{++}$ be such that $\theta + r - k > 0$. Let the related parameters be defined as follows so that they satisfy Assumptions 1 and 2: $c(t) = e^{-(\theta+r)t}, \pi_0(0) = 4k/3, \pi_0(1) = k, \pi_1(1) = \theta + r + k$, and

³To show this, they first prove that L(t) - F(t) is strictly quasi-concave, and then they improperly use Assumption 2(i) to claim that L(0) < F(0). On the other hand, they also show that $L(T_2^*) = F(T_2^*)$ (from the definitions of L(t) and F(t)), and $L(T_1^*) > F(T_1^*)$ (from their proposition 1). Therefore, These imply that there must exist a unique $T_1 \in (0, T_1^*)$ such that $L(T_1) = F(T_1)$ since L(t) and F(t) are continuous functions of t.

⁴Two cases are analyzed in their Proposition 2. If $L(T_1^*) > M(T_2)$, the authors show that the (T_1, T_2^*) -diffusion equilibrium is the unique equilibrium of the timing game; otherwise, diffusion equilibrium and joint-adoption equilibrium coexist.

¹The function V(t, t') is defined as the righ-hand side of (1) with replacing T_i and T_j by t and t', respectively.

²The (T_1, T_2^*) -diffusion equilibrium exhibits that one of the two firms adopts at T_1 and the other firm adopts at T_2^* with probability one.

 $\pi_1(2) = \theta + r + k/3$. It is easy to see that Assumptions 1 and 2 are satisfied under this setting.

We now show that L(0) > F(0). Recall that $\forall t \in [0, T_2^*]$,

$$L(t) \equiv \int_0^t \pi_0(0) e^{-rs} ds + \int_t^{T_2^*} \pi_1(1) e^{-rs} ds + \int_{T_2^*}^\infty \pi_1(2) e^{-rs} ds - c(t); \qquad (2)$$

and

$$F(t) \equiv \int_0^t \pi_0(0) e^{-rs} ds + \int_t^{T_2^*} \pi_0(1) e^{-rs} ds + \int_{T_2^*}^\infty \pi_1(2) e^{-rs} ds - c(T_2^*).$$
(3)

Thus,

$$\begin{split} L(0) - F(0) &= \int_0^{T_2^*} [\pi_1(1) - \pi_0(1)] e^{-rs} ds - c(0) + c(T_2^*) \\ &= \theta e^{-rT_2^*} \int_0^{T_2^*} [e^{rt} - e^{-\theta t}] dt \\ &> 0, \end{split}$$

where the inequality follows from $T_2^* > 0.5^{-5}$ Finally, since L(0) > F(0) and the strict quasi-concavity of L(t) - F(t), $L(T_1^*) > F(T_1^*)$ together with $L(T_2^*) = F(T_2^*)$ implies the non-existence of $T_1.6^{-6}$

We now use two numerical results to show that the counterexample includes two cases in Proposition 2 of Fudenberg and Tirole (1985). Let $(\theta, r, k) =$

$$[\pi_1(2) - \pi_0(1)]e^{-rt} + c'(t) = 0,$$

(i.e., $(\theta + r + 2k/3)e^{-rt} - (\theta + r)e^{-(\theta + r)t} = 0$ in this example) by solving this equation, we obtain that

$$T_2^* = -\frac{1}{\theta} \ln\left(1 - \frac{2k}{3(\theta + r)}\right) > 0$$

Similarly,

$$T_1^* = -\frac{1}{\theta} \ln\left(1 - \frac{k}{3(\theta + r)}\right); \text{ and}$$
$$\hat{T}_2 = -\frac{1}{\theta} \ln\left(1 - \frac{k}{(\theta + r)}\right).$$

Hence, we conclude that $\hat{T}_2 > T_2^* > T_1^* > 0$ in this example.

⁶To see this, suppose, by contradiction, that there exists $T_1 \in (0, T_1^*)$ such that $L(T_1) = F(T_1)$. Since $L(T_1^*) > F(T_1^*)$, there must exist two disjoint intervals in $[0, T_1^*]$ such that the function L(t) - F(t) is decreasing w.r.t. t in the first one, and increasing w.r.t. in the other. Note that $L(T_2^*) = F(T_2^*)$ implies that L(t) - F(t) must decrease in a subinterval of $(T_1^*, T_2^*]$, which is a contradiction of the strictly quasi-concavity of L(t) - F(t).

⁵To see that $T_2^* > 0$ in this example, since T_2^* is defined to be the solution of the following equation:

(2, 0.05, 1.5). It can be show that $L(T_1^*) \leq M(\hat{T}_2)$ (i.e. Case B of Proposition 2 in Fudenberg and Tirole (1985).) Let $(\theta, r, k) = (1, 2.1, 2)$. It can be shown that $L(T_1^*) > M(\hat{T}_2)$ (i.e. Case A of Proposition 2 in Fudenberg and Tirole (1985).)⁷ Figures 1 and 2 depict the dynamics of L(t), F(t) and M(t) in these two case, respectively. We can see, from the two figures, that L(0) > F(0). Thus the (T_1, T_2^*) -diffusion equilibrium does not exist.

Figure 1: The Case of $L(T_1^*) \leq M(\hat{T}_2)$

⁷In fact, $L(T_1^*) = 50.36 < 50.38 = M(\hat{T}_2)$ and $L(T_1^*) = 1.3 > 1.28 = M(\hat{T}_2)$ in the first and second cases, respectively.

Figure 2: The Case of $L(T_1^*) > M(\hat{T}_2)$

References

Adner, R. and P. Zemsky (2005) "Disruptive Technologies and the Emergence of Competition" *RAND Journal of Economics* **36**, 229-254.

Choi, J.P. (1996) "Preemptive R&D, Rent Dissipation, and the "Leverage Theory" " *Quarterly Journal of Economics* **111**, 1153-1181.

Fudenberg, D. and J. Tirole (1985) "Preemption and Rent Equalization in the Adoption of New Technology" *Review of Economic Studies* **52**, 383-401.

Fudenberg, D. and J. Tirole (1987) "Understanding Rent Dissipation: On the Use of Game Theory in Industrial Organization" *American Economic Review* **77**, 176-183.

Honoré, B.E. and Á.D. Paula (2010) "Interdependent Durations" *Review* of *Economic Studies* **77**, 1138-1163.

Ostrovsky, M. and M. Schwarz (2005) "Adoption of Standards under Uncertainty" *RAND Journal of Economics* **36**, 816-832.

Shen, Q. and J.M. Villas-Boas (2010) "Strategic Entry Before Demand Takes Off" *Management Science* **56**, 1259-1271.

Tirole, J. (1988) *The Theory of Industrial Organization*, Cambridge, MA: MIT Press.

Weeds, H. (2002) "Strategic Delay in a Real Options Model of R&D Competition" *Review of Economic Studies* **69**, 729-747.