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1. Introduction

Since the seminal work of Hausman, Hall, and Griliches (1984), panel count data
models have been widely applied in examining the relationship between the number
of patents and research and development (R&D) expenditures; see, among many oth-
ers, Hall, Hausman, and Griliches (1986), Montalvo (1997), Blundell, Griffith, and
Windmeijer (2002), Gurmu and Pérez-Sebastián (2008), and Czarnitzki, Kraft, and
Thorwarth (2009). To avoid the assumptions that the number of patents follows some
specific distributions and R&D is strictly exogenous, most of the studies rely on gen-
eralized method of moments (GMM) estimation for semi-parametric specifications.
For example, based on the well-known data of Hall et al. (1986), Montalvo (1997)
employed GMM for a quasi-differenced specification with predetermined regressors
and found that in contrast with the findings in Hausman et al. (1984) and Hall et
al. (1986), the contemporaneous effect of R&D is not significant, but the first-lag
effect is significantly positive. However, due to the possible presence of endogeneity
and/or measurement errors in R&D, specifications allowing only for predetermined
regressors may not be appropriate. It is also recognized that GMM may perform
poorly in the sense that the estimation bias may be substantial in finite samples.

In this paper, we reexamine the relationship between the number of patents and
R&D expenditures using also the data of Hall et al. (1986). To allow for endogene-
ity and measurement errors in regressors, we consider the specification proposed by
Windmeijer (2000). The unknown parameters are then estimated using empirical
likelihood (EL) estimation, which has been shown that it has asymptotic properties
the same as those for GMM, but enjoys a bias improvement in finite samples; see,
e.g., Newey and Smith (2004). Our main findings are in order. First, based on both
the conventional over-identifying restrictions (OIR) test and the empirical likelihood
ratio (ELR) test proposed by Kitamura (2001), it is found that the specification
considered here is appropriate, but the specification with predetermined regressors
is incorrectly specificated. Second, the EL results reveal that the contemporaneous
effect of R&D is significantly positive, yet the first-lag effect is significantly negative.
These results are in sharp contrast with the findings in Montalvo (1997). Finally, the
total effect of R&D is found to be much larger than those found in early studies.

This paper proceeds as follows. In Section 2., we briefly introduce the panel count
data specification and EL estimation employed in our empirical study. Empirical
results are then presented in Section 3.. Section 4. concludes the paper.

2. Model Specification and Estimation

Let yit and R&Dit be, respectively, the number of patents and the R&D expenditure
of the i-th firm in the t-th year. Consider the following multiplicative specification
with a linear time trend:

yit = αi exp

(
5∑

j=0

βjo ln R&Dit−j + γot̃

)
εit, i = 1, . . . , N, t = 6, . . . , T,

1209



Economics Bulletin, 2012, Vol. 32 No. 2 pp. 1208-1214

where αi is the unobservable firm-specific effect, t̃ = t − (T + 6)/2, βjo and γo are
unknown true parameter values of interest, and εit is the error term. To obtain
consistent estimators of βjo and γo without a distributional assumption on yit, one
can circumvent the problem arising from the incident parameters αi by employing
the following quasi-differenced specification proposed by Chamberlain (1992) and
Wooldridge (1997).

IE

[
yit

µit−1(θo)

µit(θo)
− yit−1

∣∣∣∣ ln R&Dit−1, . . . , ln R&Di1

]
= 0,

where µit(θ) = exp(
∑5

j=0 βj ln R&Dit−j +γt̃) with θ = [β0 β1 β2 β3 β4 β5 γ]′ ∈ Θ ⊂
IR7. The resulting specification allows only for predetermined regressors, however.

To allow for cov(ln R&Dit, εit) 6= 0, we follow Windmeijer (2000, 2008) and con-
sider the following conditional moment specification:

IE

[
yit

µit(θo)
−

yit−1

µit−1(θo)

∣∣∣∣ln R&Dit−2, . . . , ln R&Di1

]
= 0.

Based on this conditional moment specification, we can obtain unconditional moment
conditions that enable us to implement GMM estimation. Let ψi(θ) be a (T − 6)× 1
vector and Zi a (T − 6)× ((T − 6)(T + 3)/2) matrix given, respectively, by

ψi(θ) =


yi7

µi7(θ)
− yi6

µi6(θ)
yi8

µi8(θ)
− yi7

µi7(θ)
...

yiT

µiT (θ)
− yiT−1

µiT−1(θ)

 ,

and

Zi =


ln R&Di1 · · · ln R&Di5 0 · · · 0

0 ln R&Di1 · · · ln R&Di6 · · · 0
...

...
. . . 0

0 0 0 ln R&Di1 · · · ln R&DiT−2

 .

Then we have the following Model-E:

IE
[
Z ′

iψi(θo)
]

= 0, (1)

which consists of ((T − 6)(T + 3)/2) unconditional moment conditions so that θo is
overidentified when T ≥ 8.

Based on the specification (1), an optimal two-step GMM estimator for θo can be
obtained as

θ̂N,GMM = arg min
θ

[
1

N

N∑
i=1

Z ′
iψi(θ)

]′
HN(θ̃N,GMM)

[
1

N

N∑
i=1

Z ′
iψi(θ)

]
,
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where HN(θ̃N,GMM) = [N−1
∑N

i=1Z
′
iψi(θ̃N,GMM)ψi(θ̃N,GMM)′Zi]

−1 is an optimal

weighting matrix with θ̃N,GMM a preliminary GMM estimator based on the weighting

matrix: (N−1
∑N

i=1Z
′
iZi)

−1. While θ̂N,GMM enjoys optimality in the limit, it may
have substantial bias in small samples. In view of this, we thus estimate θo using
EL estimation proposed by Qin and Lawless (1994); see also Kitamura (2007) for a
recent review. Let p1, . . . , pN be a set of probability weights. Then the EL estimator
θ̂N,EL can be obtained as

θ̂N,EL = arg max
θ,p1,...,pN

N∑
i=1

ln pi subject to
N∑

i=1

pi = 1,
N∑

i=1

piZ
′
iψi(θ) = 0.

Let λ̂N,EL(θ) = arg minλ−
∑N

i=1 ln(1 + λ′Z ′
iψi(θ)). The EL estimator can also be

expressed as

θ̂N,EL = arg max
θ
−

N∑
i=1

ln
(
1 + λ̂N,EL(θ)′Z ′

iψi(θ)
)
.

Under suitable conditions, θ̂N,GMM and θ̂N,EL have the same limiting normal distri-

bution. Yet the bias of θ̂N,GMM will grow with the number of moment conditions, but

not for θ̂N,EL. It follows that θ̂N,EL will enjoy a substantial bias improvement (in finite
samples) when the number of moment conditions is large; see Newey and West (2004,
p. 230) for more detail.

When T ≥ 8, the validity of the specification (1) can be tested using either the
over-identifying restrictions (OIR) test:

OIR-J = N

[
1

N

N∑
i=1

Z ′
iψi(θ̂N,GMM)

]′
HN(θ̃N,GMM)

[
1

N

N∑
i=1

Z ′
iψi(θ̂N,GMM)

]
,

or the empirical likelihood ratio (ELR) test:

ELR-R = 2
N∑

i=1

ln
(
1 + λ̂

′
N,EL(θ̂N,EL)Z ′

iψi(θ̂N,EL)
)
.

Under the null (1), both OIR-J and ELR-R have a limiting chi-squared distribution
with [(T − 6)(T + 3)/2] − 7 degrees of freedom. However, it has been shown that
ELR-R can be more powerful than OIR-J ; see Kitamura (2001) for more detail.

3. Empirical Results

The annual data employed in this study are the second data set of Hall et al. (1986),
which was also studied in Montalvo (1997). This data set consists of the number of
patent applications and R&D expenditures for each of the 346 U.S. manufacturing
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Table I: Results of the OIR-J and ELR-R tests

OIR Test Model-P Model-E

OIR-J 29.94 23.34
ELR-R 48.56∗∗∗ 26.62

Note: Model-P is Montalvo’s quasi-differenced specification with 30 uncondi-
tional moments. ∗∗∗ denotes significance at the 1% level.

firms during the period from 1970 to 1979. We thus have T = 10 and 26 moment
conditions in the Model-E (1). To examine the validity of the specification with
predetermined R&D, we also consider Montalvo’s quasi-differenced specification, de-
noted by Model-P, which contains 30 unconditional moments. As shown in Table I,
both OIR-J and ELR-R tests reveal that the Model-E is correctly specified. By
contrast, the Model-P is strongly rejected by the ELR-R test and hence incorrectly
specified. Therefore, we focus only on the Model-E in our empirical study.

The GMM and EL estimation results for the Model-E are reported in Table II.
Unlike the GMM results (revealing that only the first lag of R&D has a significantly
positive effect) in Montalvo (1997), it is found from our GMM results in Table II that,
after taking the endogeneity of R&D into account, only the contemporaneous effect of
R&D is significantly positive, which is consistent with the early findings in Hausman
et al. (1984) and Hall et al. (1986). As for the first lag of R&D, the corresponding
coefficient estimate is negative but insignificant. This result is consistent with the
findings in Hall and Mairesse (1995) and Guo and Trivedi (2002) when allowing for
endogenous R&D. On the other hand, we can also observe from the last row of Table II
that the total effect of R&D is larger than the one reported in Montalvo (1997). It
should be, however, noted that GMM estimation may result in substantial bias in
finite samples.

Based on the more reliable EL estimates, we find that the contemporaneous effect
of R&D remains significantly positive but is larger than that suggested by the GMM
estimate. More interesting, the first lag of R&D now has a significantly negative
impact on the number of patents, in sharp contrast with the early findings. As
Czarnitzki et al. (2009) provided empirical evidence supporting that the “R” part of
R&D is the main determinant of the number of patents, one possible reason for such
a negative effect can be given as follows. Given the patents granted or applied this
year, the firm may simultaneously increase the expenditure of the “D” part of R&D
this year towards new products, but may thus reduce the expenditure of the “R”
part of R&D due to financial constraints. Therefore, the number of patents reduces
in the next year.

Finally, after taking the fixed-effects into account, the estimates for the total effect
of R&D on the number of patents reported in the early studies are typically less than,
for example, 0.56, an estimate reported in Montalvo (1997, Table 3) and thus reveal
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Table II: GMM and EL estimates of the Model-E.

GMM EL

Estimate S.D. t-ratio Estimate S.D. t-ratio

ln(R&Dit) 0.75 0.24 3.13∗∗∗ 1.77 0.28 6.32∗∗∗

ln(R&Dit−1) −0.21 0.25 −0.84 −1.02 0.29 −3.52∗∗∗

ln(R&Dit−2) 0.08 0.08 1.00 0.17 0.11 1.55
ln(R&Dit−3) 0.09 0.07 1.29 0.06 0.10 0.60
ln(R&Dit−4) 0.06 0.08 0.75 −0.09 0.11 −0.82
ln(R&Dit−5) −0.07 0.05 −1.40 −0.03 0.09 −0.33
Time trend −0.07 0.01 −7.00∗∗∗ −0.10 0.02 −5.00∗∗∗∑5

s=0 ln(R&Dit−s) 0.71 – – 0.87 – –

Note: S.D. stands for the estimated standard deviation. t-ratio is a test for the null of the
true parameter value being zero. ∗∗∗ denotes significance at the 1% level.

decreasing returns to scale. By contrast, our EL estimate is 0.87 so that the total
effect of R&D is much larger than the early findings.

4. Conclusions

In this paper we reexamine the relationship between patents and R&D using empir-
ical likelihood estimation on a panel count data model that allows for endogenous
regressors. Based on the data of Hall, Griliches, and Hausman (1986), we found that
the contemporaneous effect of R&D is significantly positive, yet the first-lag effect is
significantly negative. Moreover, the total effect of R&D is much larger than those
reported in the early studies.
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