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1. Introduction

One area of research that has become famous in applied econometrics is the
unit root null hypothesis. The main reason for this is because the unit root
null hypothesis is used to examine both economic theories, such as purchasing
power parity, and �nancial theories, such as the e¢ cient market hypothesis.
One very appealing test in this regard has been the two endogenous structural
break test of Lee and Strazicich (LS, 2003). With the structural break unit
root test, an issue at the forefront is the method of estimating the structural
breaks. The di¤erent approaches to estimating the structural break dates
have implications for the size and power properties of the respective unit
root tests, which in turn dictates the appeal of the test.

The LS test uses a grid search procedure to estimate the break date. Our
goal in this note is to examine whether using a di¤erent approach, namely
the minimal sum of squared residuals procedure, improves the size and power
properties of the LS test.

The balance of this note is organised as follows. In the next section, we
describe the LS test and discuss the two approaches to estimating break
dates. In section 3, we discuss our simulation design. In section 4, we present
our �ndings, and in the �nal section we provide some concluding remarks.

2. The LS unit root test

The LS test, based on the Lagrange Multiplier (LM) principle, is a generali-
sation of the Schmidt and Phillips (1992) and Lee and Strazicich (2004) tests
and allows for breaks under the null and alternative hypotheses for trending
data. Their test allows for two endogenous breaks in the level and trend, and
begins with the following data generating process:

yt = �0Zt + et; et = �et�1 + "t; "t � iidN(0; �2) (1)

where Zt is a vector of exogenous variables:

Model A: Zt = [1; t; D1t; D2t] , � = [�; ; d1; d2] (2)

Model C: Zt = [1; t; D1t; D2t;DT1t; DT2t] , � = [�; ; d1; d2; d3; d4] (3)
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with

Djt =

�
1 t � TBj + 1
0 otherwise

; j = 1; 2; (4)

DTjt =

�
t� TBj t � TBj + 1
0 otherwise

; j = 1; 2 (5)

where TBj denotes the break date.

The null and alternative hypotheses are:

H0 : � � 1 = � = 0 H1 : � � 1 = � < 0 (6)

The test procedure is as follows:

�yt = �0�Zt + � ~St�1 + ut; (7)

where ~St = yt � ~ x � Zt~�, t = 2; : : : ; T ; ~� are coe¢ cients in the regression
of �yt on �Zt; ~ x is given by y1 � Z1~� where y1 and Z1 denote the �rst
observation of yt and Zt.

The t-statistic ~� is used to test the null hypothesis of � = 0. In order to
estimate the unknown break dates, LS use a grid search procedure. The
break dates are associated with these dates for which the value of the test
statistic is minimal:

LM� = inf
�
~�(�); � = (�1 = TB1=T; �2 = TB2=T ): (8)

We compare the performance of the LM test as described in LS (2003) with
the LM test using an alternative method to estimate the break dates for
which the break dates are chosen according to the minimal sum of squared
residuals (SSR):

LM�
� = ~�(�̂) with �̂ = argmin

�
SSR(�): (9)

3. Simulation design

The simulations are based on 5000 replications in samples of T = 100 obser-
vations. We generate 150 observation and discard the �rst 50 to avoid any
e¤ect from initial conditions. The data is simulated according to (1), (2)
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and (3), further assuming "t � iidN(0; 1). The simulations are conducted
using GAUSS 8.0. To assess the size and power properties, we assume � = 1
and � = 0:9, respectively. We assume that the magnitude of the �rst break
and second break is equal, i.e. for level breaks d1 = d2 and for slope breaks
d3 = d4. For Model A, the level break size varies over 0, 2, 3, 5, 10, and 20.
For Model C, we judge the performance for all combinations of the values
f0; 2; 5; 10g for either level and slope breaks. The breaks are assumed to
occur at TB = (TB1 = 40; TB;2 = 60). The trimming factor is 0.2, i.e. we
exclusively search for breaks in the interval [0:2T; 0:8T ].

For test decision, the critical values derived under the assumption of no
break, that is, a break size of zero is used. We also judge the properties of
the LS test by using the critical values of the test when the break dates are
exogenously given, namely the critical values of ~�(�c) where �c is the correct
break fraction. These tests are denoted gLM � and gLM�

� , respectively.

We use the set of critical values for known break dates because of the following
reason. If with increasing break size the probability of detecting the true
break date goes to 1, limbreak size!1 P (T̂B = T 0B) = 1,1 the critical values
(and distribution) for the endogenous break test converges to that for the
exogenous break test. And if additionally the test is invariant to the break
size, as is shown by Lee and Strazicich (2003) for the LS test, it implies
the equivalence of the critical values of the endogenous break test assuming
no break and the exogenous break test. When the di¤erence between these
two sets of critical values is large and the break date estimation accuracy
increases with the break size, this leads to tests with unstable size.

4. Results

The critical values for ~�(�c), LM� and LM�
� are tabulated in Table I. It can be

seen both for Model A and C that the critical values for the endogenous break
test are absolutely higher than the critical values of the exogenous break test,
but that the di¤erence is smaller for LM�

� . In Table 2, we report the size
and power properties and the break date estimation accuracy of these tests
for Model A. Because of the di¤erence between the critical values of LM� ,

1A situation in which one always identi�es the break date correctly, i.e. P (T̂B = T 0B) =
1, is like knowing the break date.
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LM�
� and ~�(�

c) and the fact that P (T̂B = T 0B) increases with the level break
magnitude, the endogenous break tests LM� and LM�

� become conservative.
The LM�

� test is already conservative for medium sized breaks because of its
high accuracy in selecting the break date. When using the argmin� SSR(�)
procedure, the probability of detecting the break dates simultaneously is
about 40 per cent for medium sized breaks and 100 per cent for large breaks.

For the LM� test, one has the impression of an invariant (to the break size)
test. But, for large breaks LM� is also conservative. This result is mirrored
in the test properties when using the critical values of ~�(�c) for test decision.
So, we observe large oversizing for gLM � in the case of small and medium
sized breaks and an empirical size close to the nominal one for large breaks.
The gLM�

� test rejects the null hypothesis in approximately 11 per cent of the
cases for small breaks. For medium and large sized breaks the size of the test
is around the nominal 5 per cent.

For Model A, the LM�
� andgLM�

� tests are characterised by break date estima-
tion accuracy, while the LM� test has slightly more stable rejection frequency
for empirically relevant break sizes. The power of the three tests do not di¤er
considerably.

The size, power, and break date estimation accuracy results for Model C are
reported in Table 3. Using the selection method of minimising LM� one is
not able to identify the break date accurately. So, the prerequisite of the
convergence of the critical values of the endogenous break test to that of the
exogenous break test with increasing break magnitude is not ful�lled and,
as a result, the use of gLM � is not recommended. But the test size of LM�

varies a lot with the break size, especially in the case of slope breaks.

In contrast, the break date selection accuracy is much superior when one uses
the selection method based on the minimising SSR procedure. For example,
the estimation accuracy ranges from 70 per cent in the case of medium sized
breaks to 100 per cent in the case of large sized breaks. The LM�

� test which
is based on this selection approach is very conservative. But using the critical
values of ~�(�c) the empirical size is very close to the nominal size. The power
of the LM� test is mostly higher than for the gLM�

� test. This is only due to
oversizing, which can be seen in those cases of level and slope breaks where we
observe rejection frequencies of around 5 per cent under the null hypothesis.

For Model C, the gLM�
� test is superior to the LM� test. Taken on the
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whole, when using the LS unit root test, the practitioner seems to be bet-
ter o¤ by using the argmin� SSR(�) break date selection criteria than the
argmin� LM� (�) criteria.

We do not emphasise on Model B, which is referred to as a mixed model,
because it is hardly used in applied work. The most commonly used models
are A and C. However, at the suggestion of a referee of this journal, we also
consider the performance of the mixed model. Like with the results from
models A and C, we �nd that the LS test of Model C has better statistical
properties when the break date selection is based on the SSR procedure.
Detailed results are available upon request.

5. Concluding remarks

The Lee and Strazicich (2003) endogenous two break unit root test is widely
used in applied economics for theoretical evaluations. Given this popularity,
and the implications of the break date selection criterions on the performance
of the test itself, our goal in this note was to compare the size, power, and
break date estimation accuracy properties of the LS test based on two break
date selection procedures, namely minimising LM� and SSR. We �nd that
generally Models A and C of LS have better statistical properties when the
break date selection is based on the SSR procedure. Moreover, our �ndings
suggest that using the argmin� SSR(�) procedure, one is able to estimate
break dates very accurately - 100 per cent estimation accuracy for large
breaks when using SSR compared with about 40 per cent accuracy under
the argmin� LM� (�) procedure.
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Table I: Critical values of ~�(�c), LM� and LM�
� for T = 100 based on 5000

replications; �c = (0:4; 0:6)
Test Selection Model A Model C

statistic method 1% 5% 10% 1% 5% 10%
~�(�c) exogenous -3.699 -3.090 -2.802 -4.742 -4.171 -3.898
LM� argmin� LM� (�) -4.515 -3.862 -3.501 -5.882 -5.283 -4.993
LM�

� argmin� SSR(�) -4.329 -3.651 -3.280 -5.626 -5.006 -4.674

Table II: 5 percent rejection frequency and probability of detecting the true
break dates simultaneously, T = 100, �c = (0:4; 0:6), 5000 replications;
Model A

argmin� LM� (�) argmin� SSR(�)

� d1 = d2 LM�
gLM� P (T̂B = TB) LM�

�
gLM�

� P (T̂B = TB)
1 0 0.050 0.178 0.001 0.050 0.123 0.001
1 2 0.052 0.201 0.026 0.049 0.123 0.102
1 3 0.060 0.206 0.088 0.040 0.101 0.422
1 5 0.071 0.238 0.198 0.014 0.054 0.963
1 10 0.036 0.227 0.307 0.010 0.049 1.000
1 20 0.007 0.076 0.410 0.013 0.052 1.000
0.9 0 0.205 0.585 0.001 0.197 0.431 0.001
0.9 2 0.192 0.550 0.033 0.170 0.375 0.099
0.9 3 0.187 0.544 0.133 0.141 0.339 0.405
0.9 5 0.145 0.511 0.331 0.066 0.225 0.957
0.9 10 0.048 0.373 0.590 0.053 0.210 1.000
0.9 20 0.034 0.222 0.800 0.060 0.220 1.000
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Table III: 5 percent rejection frequency and probability of detecting the true
break dates simultaneously, T = 100, �c = (0:4; 0:6), 5000 replications;
Model C

argmin� LM� (�) argmin� SSR(�)

� d1 = d2 d3 = d4 LM�
gLM� P (T̂B = TB) LM�

�
gLM�

� P (T̂B = TB)
1 0 0 0.050 0.434 0.001 0.050 0.252 0.001
1 0 2 0.011 0.193 0.006 0.010 0.084 0.113
1 0 5 0.032 0.351 0.001 0.005 0.058 0.228
1 0 10 0.372 0.854 0.000 0.006 0.060 0.232
1 2 0 0.058 0.457 0.001 0.052 0.226 0.071
1 2 2 0.027 0.282 0.000 0.009 0.073 0.603
1 2 5 0.102 0.534 0.000 0.007 0.063 0.699
1 2 10 0.508 0.932 0.000 0.007 0.065 0.694
1 5 0 0.064 0.527 0.014 0.008 0.074 0.921
1 5 2 0.086 0.522 0.000 0.004 0.058 0.996
1 5 5 0.289 0.816 0.000 0.004 0.059 0.998
1 5 10 0.752 0.989 0.000 0.005 0.054 0.999
1 10 0 0.039 0.555 0.027 0.005 0.051 1.000
1 10 2 0.176 0.832 0.001 0.005 0.053 1.000
1 10 5 0.599 0.978 0.000 0.004 0.054 1.000
1 10 10 0.938 0.999 0.000 0.006 0.055 1.000
0.9 0 0 0.105 0.618 0.001 0.102 0.378 0.001
0.9 0 2 0.028 0.320 0.005 0.025 0.166 0.105
0.9 0 5 0.075 0.534 0.001 0.015 0.140 0.265
0.9 0 10 0.491 0.935 0.000 0.016 0.125 0.246
0.9 2 0 0.106 0.626 0.003 0.091 0.346 0.074
0.9 2 2 0.054 0.440 0.001 0.021 0.146 0.586
0.9 2 5 0.184 0.715 0.000 0.017 0.139 0.681
0.9 2 10 0.649 0.975 0.000 0.018 0.127 0.675
0.9 5 0 0.096 0.653 0.021 0.020 0.130 0.923
0.9 5 2 0.137 0.677 0.000 0.013 0.116 0.992
0.9 5 5 0.421 0.918 0.000 0.012 0.118 0.996
0.9 5 10 0.868 0.997 0.000 0.014 0.114 0.995
0.9 10 0 0.053 0.629 0.064 0.014 0.113 1.000
0.9 10 2 0.251 0.916 0.003 0.015 0.121 1.000
0.9 10 5 0.733 0.996 0.000 0.012 0.118 1.000
0.9 10 10 0.982 1.000 0.000 0.013 0.125 1.000
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