


Economics Bulletin, 2012, Vol. 32 No. 1 pp. 456-465

 

 

 
1. Introduction 

In many real world auctions, the seller is poorly informed while each bidder is well 
informed, not only about the item(s) being auctioned and hence his own valuation, but also 
about his competitors’ valuations. Bernheim and Whinston (1986) use the example of a few 
firms relying on a common technology and routinely bidding on construction contracts to 
justify the complete information assumption. Gale and Stegeman (2001, p.75) argue that 
the assumption is justified in cases where two well informed sellers bid sequentially for 
contracts, like for waste disposal, consulting services and military hardware. Electronic 
livestock auctions are also good examples. The Quebec hog auction was in operation every 
day except on weekends between 1989 and 2008 as seven meat processors were competing 
on virtual fixed-size lots of hogs scoring 100 on a quality index.1     

The analysis of multi-unit demand sequential auction under complete information with 
more than two asymmetric bidders has been largely ignored in the literature possibly 
because of a presumption that results for two bidders could be generalized to the k-bidder 
case. Important contributions on multi-unit auctions under complete information by 
Krishna (1993), Katzman (1999), Gale and Stegeman (2001) and Rodriguez (2009) 
demonstrate the existence of a unique Nash perfect equilibrium when there are two bidders. 
Jeddy, Larue and Gervais (2010) analyzed price trends and allocations when k bidders have 
identical decreasing valuations. They found that symmetric allocations and constant price 
trends are supported by rather stringent conditions on the declining pattern of valuations. 
Thus, unique asymmetric allocations are the most common equilibrium outcomes in this 
setting. 

As is common in the auction literature (e.g., Engelbrecht-Wiggans, 1999), we rely on a 
numerical example for a sequential second-price auction involving three bidders and four 
objects to show that equilibrium uniqueness charactering 2-bidder auctions under complete 
information, does not hold generally.  

 
2. The model and discussion 

Consider a sequence of four second-price auctions where three individual bidders have 
diminishing marginal valuations such that: 1 2 3 4  ,  ,  j j j jV V V V j A B C> > > ∀ = where j

iV is the 
ith valuation of bidder j. They compete for four homogenous objects under complete 
information. In the example that follows, we will use { }20,  15,  14,  12AV = , 

{ }18,  13,  10,  5BV =  and { }17,  11,  9,  3CV = .  The seller is non-strategic and sets a reserve 
price equal to zero. The strategic behaviour of bidders in second-price multi-unit sequential 
auctions under complete information was characterized by Krishna (1993, 1999), Katzman 
(1999), Gale and Stegeman (2001) and Jeddy, Larue and Gervais (2010). Each bidder is 
assumed to follow the weakly dominant strategy of sincere bidding in the last and 4th round. 

                                                 
1 When hogs were delivered to a plant, a quality grid was used to make price adjustments for hogs scoring 
below or above 100. Therefore, quality issues were internalized. Furthermore, it is not heroic to assume that 
each meat processor knows the production capacity, cost structure and market opportunities of other meat 
processors. 
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For k < 4, it is a weakly dominant strategy for each bidder to place a bid in the kth round 
that would make him indifferent between winning and losing the kth round, considering the 
contingent outcomes from the (k+1)th to the 4th rounds. The game is solved by backward 
induction and in 2-bidder auctions, the equilibrium is unique.  As we will see below, higher 
dimensions bring complexities and multiple equilibria.  

When there are 2j >  bidders, some bidders may not matter. In a second-price auction 
of a single object under complete information, the unique equilibrium has bidder A winning 
the object at price 1

Bp V= , provided that 1 1 1 1...  A B C JV V V V> > > > . The outcome would be 

the same whether some bidder(s) j, { },j A B≠ , is (are) bidding or not, which contrasts with 
the case when bidders are incompletely informed about their rivals’ valuations. In this one-
object auction, bidders C,..., J are in a “non-strategic” position because their valuations 
have no impact on the equilibrium price.  The same insight applies in higher dimensional 
auctions with J bidders and n objects. Intuitively a bidder with low valuations is more 
likely to matter once bidders with high valuations have won some objects. Accordingly, if a 
bidder cannot win or influence the price at one of the 1nJ −  nodes at the bottom of the 
outcome tree of the game, then the bidder is said to be in a non-strategic position.  

Figures 1-3 illustrate three parts of the outcome tree for our 3 bidder-4 object auction.  
In Figure 1, it is assumed that the 1st object has been won by bidder A. Starting at node A, 
the 2nd object can be won by bidder A, bidder B or bidder C, hence the nodes AA, AB and 
AC. At node AAA, it is assumed that the first three objects have been won by A. If bidder 
A was to win the 4th and last object, his gross payoff would be the sum of his valuations for 
objects won, 61, minus the sum of prices of objects won in subsequent rounds, which is 
zero given that this is the last round. Losing the 4th object to bidder B or bidder C entails a 
payoff of 49. Therefore, bidder A is willing to bid 61-49=12 for the 4th and last object while 
bidders B and C are willing to bid 18-0=18 and 17-0=17, respectively. Conditional on 
bidder A winning the first three objects, bidder B would win the last object and pay bidder 
C’s bid of 17, hence the arrow emanating from AAA and pointing toward the gross payoff 
associated with bidder B winning the last object. At node ACC, the 1st object has been 
allocated to bidder A and the next two to bidder C. Competing for the last object, bidders, 
A, B, and C would bid (35-20=15), (18-0=18) and (37-28=9), respectively. Bidder B would 
win and pay bidder A’s bid. Because the bids that matter at nodes AAA and ACC involve 
bids by all three bidders, we cannot simplify the game by discarding one or more bidders 
on the ground that they have non-strategic positions.  

The arrows emanating from the nodes AAA, AAB, …, CCC in Figures 1-3 show all of 
the conditional fourth object allocations. Conditional on the allocation of the first two 
objects and the contingent allocation of the 4th object, we can then analyze the allocation of 
the 3rd object. To do that, we begin by computing the gross payoffs at nodes AAA, ..., CCC. 
For example, the gross payoff vector at node AAA is the gross payoff at AAAB adjusted 

for the price of the 4th object won by bidder B:  

49

18 17

0

 
 − 
 
 

=

49

1

0

 
 
 
 
 

. Conditional on A 

winning the first two objects, the gross payoffs associated with bidder B winning the 3rd 
object (and C winning the fourth), at node AAB,  and C winning the 3rd object (and B 
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winning the fourth), at node AAC, are respectively given by 

35

18

3

 
 
 
 
 

 and 

35

4

17

 
 
 
 
 

. Unlike in the 

last round, the opportunity cost of losing is no longer invariant. Bidder B is willing to pay 
as much as 14 to prevent C from winning and as much as 17 to prevent A from winning.  
Similarly, bidder C is willing to spend 17 to prevent A from winning and 14 to prevent B 
from winning. These variations in the opportunity costs occur because of the contingent 
allocations of the 4th object. However, bidders B and C know that bidder A will bid only 14 
and that they do not need to bid as much as 17 to counter him. It is also clear that they have 
an incentive to bid 14+ε  as close as possible to, but in excess of, 14 given that bidder B 
would prefer to lose to bidder C and vice versa.2 Hence, conditional on bidder A winning 
the first two objects, the price for the 3rd object would be 14+ε  and there would be two 
potential equilibria: one with bidders B and C winning the 3rd and 4th objects and one with 
bidders C and B winning the 3rd and 4th objects. The adjusted gross payoff vectors at node 

AA are 

35

4

3

ε
 
 − 
 
 

 and 

35

4

3 ε

 
 
 
 − 

. At node AB, bidders A and C have an incentive to bid in 

excess of 13 to prevent B from winning, but because bidder C is willing to pay as much as 
14 to prevent bidder A from winning, bidder A has no incentive bid in excess of 13.  Bidder 
C wins with a bid of 14 and pays 13.  At node AC, the 3rd and 4th objects are won by 
bidders B and A. Bidders A and B know that bidder C will bid only 11 and hence is not in a 
strategic position in this subgame. Since bidder B (A) is willing to pay as much as 14 (13) 
to prevent A (B) from winning, bidder B wins and pay 13. The adjusted gross payoffs at 

nodes AB and AC are 

22

18

4

 
 
 
 
 

 and 

22

5

17

 
 
 
 
 

. Conditional on the 1st object being allocated to 

bidder A and the contingent allocations for the 3rd and 4th objects, we can then analyze the 
allocation of the second object, noting from Figure 1 that bidder A is willing to bid 35-

22=13 while bidder B is willing to bid 18-4+
2
ε
=14+

2
ε
 to counter A and 18-5=13 to 

counter C. Bidder C is willing to bid 17-3+
2
ε
=14+

2
ε
 to counter A and 17-4=13 to counter 

B. This is so because risk neutral bidders rely on expected payoffs to compute their bids. At 
node AA, either bidder B or C can win the third object by paying 14 + ε . Thus, the vector 

                                                 
2 Bidder B (C) would bid 14 if he was sure that bidder C (B) would bid more than 14. Since bidders bid 
simultaneously and noncooperatively, bidders B and C must insure that bidder A does not win and cannot 
take the chance to bid only 14. Because they are concerned with the winner’s curse, they bid 14+ε , where 
ε is the smallest possible increment and each has a probability of winning of 0.5  
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of expected payoffs at this node is

35 35
352

4 4
4

2 2
3 3

3
2 2

ε ε

ε ε

+   
   
   

− +   = −   
   + −   −    

. Knowing that a bid of 13+ε  as 

close as possible to, but in excess of, 13 is best, both bidders B and C can win the 2nd 
object, conditional on bidder A winning the 1st object. There are two possible equilibria: 
one with bidders B, C and A winning the 2nd , 3rd and 4th objects and one with bidders C, B 
and A winning the 2nd, 3rd and 4th objects. The corresponding adjusted gross payoff vectors 

at node A are 

22

5

4

ε
 
 − 
 
 

and

22

5

4 ε

 
 
 
 − 

, respectively.   

The same sort of reasoning is used to move up the part of the outcome tree depicted by 
Figure 2. Conditional on the first two objects being allocated to bidders B and C (i.e., node 
BC), there are two possible allocation paths for the 3rd and 4th objects. Bidder A is willing 
to pay as much as 15 to prevent bidder C from winning the 3rd object, but bidder C’s bid of 
11 can be beat by a bid of 13 which is what bidder A is willing to pay to prevent bidder B 
from getting the 3rd object. Since 13 is also the bid of bidder B, bidders A and B are equally 
likely to win the third object, conditional on bidders B and C winning the first two.  At 
node BA, bidder B’s bid is 13. Bidder C is willing to pay as much as 14 (15) to prevent 
bidder A (C) from winning the object. Knowing that C will outbid B, bidder A is 
indifferent between paying 13 and letting C win. Hence C wins and pays 13.  Conditional 
on B winning the first object (i.e, node B), bidders A and B bid 13.  Bidder C’s payoff is 
highest if bidder B wins and hence he must bid strictly less than 13.  Thus, conditional on 
bidder B getting the first object, the second object would be won by bidders A and B with 
equal probabilities.  

In Figure 3, conditional on the first object being allocated to bidder C, the remaining 
three objects would be allocated either to bidders A, B and A or to bidders B, A and A at a 
constant price of 13; or to bidders B, B and A at prices 13, 13 and 11, respectively.                             

To determine the allocation of the first object and hence the equilibrium paths, we need 

to compare adjusted gross payoff vectors at nodes A, B and C: 

22

5

4

ε
 
 − 
 
 

or 

22

5

4 ε

 
 
 
 − 

 if bidder 

A wins, 

9

18

4

 
 
 
 
 

 or 

9

18

6

 
 
 
 
 

 if bidder B wins and 

9

5

17

 
 
 
 
 

 if bidder C wins. Because bidders are 

risk neutral and rely on expected payoffs to compute their bids, we can infer that bidder A 
has an incentive to bid 13 to counter bidders B and C, but bidder B is willing to pay 13 to 

prevent C from winning and 13+
2
ε
 to counter bidder A. Bidder C has an expected payoff 

of 5 if B wins and hence is willing to pay only 12 to prevent B from winning. Like B, 
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bidder C is willing to pay 13+
2
ε
 to prevent A from winning. Accordingly, bidder C has no 

incentive to bid as high as bidder B. Therefore, bidder B wins the first object by bidding 

13+
2
ε
 and pays 13, the bids of the other two bidders. The entire game has two equilibrium 

allocations given by: E1 = (B, A, C, A) with vector of prices (13, 13, 13, 13) and E2 = (B, B, 

C, A) with vector of prices (13, 13, 11, 11) generating payoff vectors 

9

5

4

 
 
 
 
 

 and 

9

5

6

 
 
 
 
 

.    

Proposition. In multi-unit demand second-price sequential auction under complete 
information, there can be more than one pure strategy Nash perfect equilibrium.   
 

The uniqueness property in Katzman (1999) 2-bidder and 2-object sequential auction 
and in Gale and Stegeman (2001) 2-bidder and n object auctions does not generalize,3 but 
as in Katzman (1999), an inefficient equilibrium characterized by a declining price pattern 
can emerge.  

As in the 2x2 auctions, bidders in J-bidder auctions may find it optimal to concede 
objects to exploit the declining valuations of rivals. In a 2x2 auction, this sort of strategy is 
tantamount to choosing an allocation path. When there are several bidders, a bidder 
conceding an object may only increase the probability of his preferred path even if bidders 
have asymmetric valuations as in our example. As a result, multiple equilibria are likely.    

 

3. Conclusion 

We analyze multi-unit demand sequential second-price auction under complete information 
with asymmetric bidders. We rely on a three bidder - four object example to show that the 
result about equilibrium uniqueness in 2 bidder - n object case (e.g., Gale and Stegeman, 
2001) is not robust. The implication is that different allocations may be observed in 
frequently repeated auctions involving the same bidders even if their valuations do not 
change. Casual empirical evidence from the Quebec daily hog auctions between February 
1st of 2006 and August 31th of 2006 supports this hypothesis. The coefficient of variation 
for U.S. hog price over this period is 0.09. Given that the Canadian and US markets are 
highly integrated, the US price is a proxy for the variability of the market. The relative 
stability of the market over this short period suggests that processors’ valuations probably 
did not change much. Yet, the coefficient of variation of the Herfindahl index, which 
captures changes in the allocations on the auction, is 0.23. This evidence does not constitute 
a formal test, but it is consistent with multiplicity of equilibrium allocations in the daily 
sequential auctions.   

 

                                                 
3 Cai et al. (2007) show that a pure strategic symmetric equilibrium does not exist in sequential auctions in 
which all bids are revealed after each auction and bidders have single-unit demand. 

461



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 456-465

 

 

4. References 

Bernheim, B. D. and M. D. Whinston (1986) “Menu Auctions, Resource Allocation, and 
Economic Influence” Quarterly Journal of Economics 101, 1-32. 

 
Cai, G., P. R. Wurman and X. Chao (2007) “The Non-existence of Equilibrium in 

Sequential Auctions When Bids are Revealed” Journal of Electronic Commerce 8, 141-
157.  

 
Engelbrecht-Wiggans, R. (1999) “An example of Multi-Unit Auctions with Atypically 

Many Equilibria” Economics Letters 65, 67-69. 
 
Gale I. L. and M. Stegeman (2001) “Sequential Auctions of Endogenously Valued 

Objects” Games and Economic Behavior 36, 74-103. 
 
Jeddy M., B. Larue and J-P. Gervais (2010) “Allocations and Price Trends in Sequential 

Auctions under Complete Information with Symmetric Bidders” Economics Bulletin 
30, 429-436.  

 
Katzman B. (1999) “A Two Stage Sequential Auction with Multi-Unit Demands” Journal 

of Economic Theory 86, 77-99. 
 
Krishna, K. (1993) “Auctions with Endogenous Valuations: The Persistence of Monopoly 

Revisited” American Economic Review 83, 147-60.  
 
Krishna, K. (1999) “Auctions with Endogenous Valuations: The Snowball Effect 

Revisited” Economic Theory 13, 377-391.  
 
Rodriguez, G. E. (2009) “Sequential Auctions with Multi-Unit Demands” The B.E. 

Journal of Theoretical Economics Volume 9: Issue 1 (Contributions), Article 45.  
 
 
 
 

462



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 456-465

    

 

A
A

A

A
B

A
C

A
A

A
A

A
B

A
A

C
A

B
AA
B

B
A

B
C

A
C

A
A

C
B

A
C

C

p
3

=
 1

3
p
3

=
 1

3

p
4
=

 1
7

p
4

=
 1

4
p
4

=
 1

3
p
4

=
 1

4

3
5 0 2
8













p
4

=
 1

4
p
4
=

 1
4

p
4

=
 1

5
p
4

=
 1

3
p
4

= 
1

5

2
0

1
8 28













2
0 0 37











2
2 5 1
7













2
2

1
8 4













3
5

4
 i
f 
B
 w

in
s

3 3
5 4

 i
f 
C
 w

in
s

3

ε ε

− −

 


 





 


 


 


 


 




2
0

1
8 2
8













2
0 31 1
7













3
5

18 1
7













2
0 3 28













2
2

1
8

1
7













3
5 4 17











2
2

1
8

1
7













2
0 31 2













3
5

18 3













3
5

18 3













4
9 1 0













3
5 4 17











35 0 2
8













3
5

18 17











4
9 0 1
7













2
0

1
8 28













2
0 31 1
7













3
5

18 17











2
0 31 1
7













2
0 41 0













3
5 3
1 0













3
5

18 17











3
5 3
1 0













4
9

1
8 0













3
5 0 2
8













3
5

18 17











4
9 0 1
7













3
5

18 17











3
5 3
1 0













4
9 0 1
7













4
9

1
8 0













6
1 0 0













4
9

1
8 0













2
1
3

p
ε

=
+22
5

 i
f 
B
 w

in
s

4 2
2 5

 i
f 
C
 w

in
s

4

ε ε

− −

 


 





 


 


 


 


 




3
1
4

p
ε

=
+

 

F
ig
ur
e 
1.
 P
ar
t o

f t
he
 o
ut
co
m
e 
tr
ee
, g
iv
en
 th

e 
fi
rs
t o

bj
ec
t i
s 
al
lo
ca
te
d 
to
 b
id
de
r A

.  

463



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 456-465

  

B
A

B

B
B

B
C

B
A

A
B

A
B

B
A

C
B

B
AB

B
B

B
B

C
B

C
A

B
C

B
B

C
C

p
3

=
 1

1
p
3

=
 1

3
p
3

=
 1

3

p
4
=

 1
4

p
4

=
 1

3
p
4

=
 1

1
p
4

=
 1

3

2
0

1
8 2
8













p
4

=
 1

5
p
4
=

 1
5

p
4

=
 1

7
p
4

=
 1

1
p
4

=
 1

3

0 3
1

2
8













0 1
8

3
7













9 1
8

1
7













9 3
1 6













2
2

1
8 4













0 3
1

2
8













0 4
1

1
7













2
0

3
1

1
7













7 1
8

2
8













9 3
1

1
7













2
2

1
8

1
7













9 3
1

1
7













3 4
1 0













2
0

3
1 2













2
0

3
1 2













3
5

1
8 3













2
2

1
8

1
7













2
0

1
8 2
8













2
0

3
1

1
7













3
5

1
8

1
7













0 3
1

2
8













0 4
1

1
7













2
0

3
1

1
7













0 4
1

1
7













0 4
6 0













2
0

4
1 0













2
0

3
1

1
7













2
0

4
1 0













3
5

3
1 0













2
0

1
8

2
8













2
0

3
1

1
7













3
5

1
8

1
7













2
0

3
1

1
7













2
0

4
1 0













3
5

1
8

1
7













3
5

3
1 0













4
9

1
8 0













9 1
8

 i
f 
A
 w

in
s

4 9 1
8

 i
f 
B
 w

in
s

6












 





















3
5

3
1 0













p
2

=
 1

3

 

F
ig
ur
e 
2.
 P
ar
t o

f t
he
 o
ut
co
m
e 
tr
ee
, g
iv
en
 th

e 
fi
rs
t o

bj
ec
t i
s 
al
lo
ca
te
d 
to
 b
id
de
r B

.  

464



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 456-465

  

C
A

C

C
B

C
C

C
A

A
C

A
B

C
A

C
C

B
AC

B
B

C
B

C
C

C
A

C
C

B
C

C
C

p
3

=
 1

3
p
3

=
 1

3
p
3

=
 1

3

p
4
=

 1
4

p
4

=
 1

5
p
4

=
 1

3
p
4

=
 1

5

20 0 3
7













p
4

=
 1

3
p
4
=

 1
3

p
4

=
 1

1
p
4

=
 1

3
p
4

=
 1

8

p
2

=
 1

3

0 18 37











0 0 4
0













7 5 2
8













9 1
8

1
7













22 5 17











0 18 3
7













0 31 28













20 1
8 2
8













2 0 37











7 18 28













20 3 2
8













7 18 2
8













9 3
1

1
7













22 1
8

17











2
2

18 1
7













35 4 17











20 3 2
8













20 0 3
7













20 1
8 2
8













35 0 28













0 18 37











0 31 28













2
0

18 28













0 31 28













0 41 1
7













20 3
1

17











20 1
8 2
8













20 3
1

17











35 18 17











20 0 3
7













20 1
8 2
8













3
5 0 2
8













20 1
8 2
8













20 3
1

17











35 18 17











35 0 28













35 18 17











49 0 17











9 5 1
7













 

F
ig
ur
e 
3.
 T
he
 o
ut
co
m
e 
tr
ee
, g
iv
en
 th

e 
fi
rs
t o

bj
ec
t i
s 
al
lo
ca
te
d 
to
 b
id
de
r C

.  

465


