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1 Introduction

The literature on agent-based computational finance provides a view on financial markets as
composed of interacting groups of learning, bounded-rational agents, and models important
features of these markets by means of computationally-oriented simulations of artificial mar-
kets. One of the main features of this approach is the explicit modeling of the process of induc-
tive expectations formation on which agents are allowed to adapt their expectations regarding
future returns according to the evolution of market states (see Wan et al., 2002; LeBaron, 2006,
for reviews on this literature). The implementation of this task vary from model to model, but
the most prominent use genetic algorithms (Lettau, 1997; Dawid, 1999), classifier forecasting
systems (Arthur et al., 1997), fuzzy logic systems (Tay and Linn, 2001), genetic programming
(Chen and Yeh, 2001), and artificial neural networks (Beltratti and Margarita, 1993).

This great variety of alternative models of inductive expectations illustrates the increasingly
interest in economics for the modeling of learning in a bottom-up perspective. However, nearly
all of these models are in some way set up ad hoc without clear justification (Brenner, 2006).
Most studies on artificial stock markets have its empirics drawn from the final results obtained
from the simulations of the entire model making it hard to identify whether the conclusions
derived are directly related to the adopted model of expectations formation, or to any other
component of the setup. This raises the questions: Are the results obtained from these studies
sensitive to the choice of the expectational model? Are these computationally intensive algo-
rithms needed? How realistic are they? Here we focus on these two latter questions and empir-
ically evaluates the use of a genetic-based learning classifier system algorithm (GBLCSA) for
stock returns prediction in a real stock market1.

A classifier system is an adaptive rule-based system that models an environment considering
a set of competing condition-action rules (Holland, 1986; Holland et al., 1986; Booker et al.,
1989). When the forecasting environment is the stock market, classifier systems are used as
inductive reasoning algorithms to mimic the process of expectation formation (Arthur et al.,
1997; LeBaron et al., 1999; Palmer et al., 1999). To allow for learning capabilities to react
in changing environments one needs to further consider rule-discovery algorithms, such as
a genetic algorithm. Genetic algorithms (Holland, 1962, 1975) constitute a class of search,
adaptation, and optimization techniques based on natural evolution. From a starting set of
competing rules the algorithm applies selection, crossover, and mutation operators to create a
new generation of rules. The process is then replicated a number of times to create successive
generations until a termination criterion is met, and the final population of rules delivers a
collection of solution candidates.

Here, we present a GBLCSA whose main properties are drawn from the above literature.
In the context of a forecasting exercise, however, special care is required into the design of the
attached learning algorithm so as to guarantee convergence has been achieved when a forecast
is taken out of this algorithm. Given that genetic algorithms are in a great part stochastically
determined, repeated executions of the algorithms over an identical set of input data can lead to
distinct outputs. In this sense, by convergence of the learning algorithm we mean that (approx-
imately2) the same series of forecasts are obtained from repeated executions of the algorithm.
We deal with this issue by further developing the learning algorithm to make its key parameters
endogenous.

We evaluate the forecasting performance of the GBLCSA using stock market (rather than

1As in most applications evaluating stock returns predictability, this study can also be related to the well known
literature evaluating the hypothesis of efficient markets (Fama, 1991), but we do not explore this link in detail here.

2A precise definition of this approximation is given in the description of the algorithm.
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artificially generated) data and taking two computationally simpler benchmarks to contrast
with, namely a recursive regressions algorithm (RRA) and a random walk algorithm (RWA).
We find that the GBLCSA fails to beat these simpler algorithms. Previous work employing the
learning classifier systems to forecast exchange rates (Beltrametti et al., 1997; Stone and Bull,
2008) and stock market indices (Mahfoud and Mani, 1996; Allen and Karjalainen, 1999; Liao
and Chen, 2001; Schulenburg and Ross, 2002; Armano et al., 2002; Chen et al., 2007) overall
favors the use of classifier systems. The fact that we find divergent evidence here may be due
to our concerns on the convergence issue and the correspondent methodological improvements
proposed.

From these results, our argument then is that the support to any computational algorithm as
representative of agents process of expectations formation depends crucially on its attractive-
ness as a forecasting device. A similar argument has been drawn by Branch and Evans (2006) to
evaluate the empirical plausibility of recursive forecasting algorithms adopted in the literature
modeling expectations through adaptive learning (see Evans and Honkapohja, 2001). We ac-
knowledge, however, that it is not possible to achieve an incisive answer to this question solely
by looking at agents incentives to use the forecasting device, specially for algorithms having a
population interpretation as the one we analyse here (Vriend, 2000). Even if an algorithm has
a poor forecasting performance, such that any kind of rationality would preclude its usage, it
can still be the case that it stands as a representative of the market-wide population of hetero-
geneous agents. In this sense, our results stand just as case against the use of genetic-based
learning classifier systems as forecasting devices.

The rest of this paper is organized as follows. Section 2 describes the forecasting algo-
rithms. Section 3 presents data and discusses calibration issues. Section 4 shows the forecast
evaluation results, while Section 5 concludes this study.

2 Algorithms

The GBLCSA is made up of sets of predictors, where each of them is a condition-forecast rule.
While the condition part determines when a particular predictor is activated according to the
current state of the market, for example, the forecast part includes a formula for next period
returns. A strength value is also assigned to each predictor to measure its past accuracy and
thus allow the activated predictors to be selected. Learning capabilities to react in a changing
environment are then added. Here, a rule-discovery algorithm (usually a genetic algorithm) is
coupled to the classifier system. Figure 1 shows the GBLCSA processing routine.

At each period the classifier system may be represented by a table consisting of N rules
that map the states of the market into forecasting parameters. Strength values are associated
with these parameters. The states are coded into binary strings made up of l positions, each of
which taking on the values 1 or 0 for the current condition of the market. When data are either
unavailable to define a market state value or when a rule is evolved as to make a state irrelevant,
we denote the resulting state by the wildcard symbol #3. Though predefining a set of binary
states limits the algorithm to forecast conditioned solely on this information set, the use of the
wildcard character aims to remedy this deficiency by allowing the algorithm to dynamically
ignore these variables and to focus on the piece of information really relevant (LeBaron et al.,
1999).

The forecasting part of each rule is represented by linear equation parameters. Here, we

3Initialisation of the condition part of the N rules is done randomly with probabilities: #−50%, 1−25%, and
0−25%. This set up usually has minor effects on the final results.
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take two functional forms having the benchmark algorithms in mind. The first includes a drift,

r̂dri f t
j,t = â j + b̂ jrt−1, (1)

and the second has no drift term,
r̂nodri f t

j,t = b̂ jrt−1. (2)

The parameters are initially set to uniformly distributed random values confined within the
lower and upper bounds ain f , asup, bin f , bsup. These limits are symmetrically set around zero
and are picked to include the minimum and maximum values of the corresponding parameters
when estimated by recursive regressions. Then, the parameters are left to evolve following the
genetic algorithm described below.

The strength s j of each rule is defined as the reciprocal of the average squared forecast error
measure v2

j , which is adjusted each period for the activated rules according to the exponentially
weighted average of the squared forecast error,

v2
j,t = τv2

j,t−1 +(1− τ)
(
rt− r̂ j,t

)2
, (3)

where τ determines the horizon length considered while evaluating the forecasting performance
of each rule. As the strength measure is also used as the selection criterion for the genetic
algorithm, τ can be interpreted as a measure of the speed of adjustment of the forecasting rules.

As for the final forecast output provided by the GBLCSA each period, figure 1 shows that
after a subset of forecasts is obtained one still has to define how to get a point forecast from
them. Here, we suggest the construction of three predictors to obtain the final forecasts from the
currently active rules: (1) select the forecast from the rule with greater strength; (2) compute
a simple arithmetic mean over rules forecasts; and (3) compute a weighted average over rules
forecasts, where the weights are given by the strength of each rule. We thus consider not only
the narrower individual-based predictor commonly found in the literature (1) but also the wider
population-based predictors (2) and (3).

As usual, for rule discovery we take a genetic algorithm (Holland, 1962, 1975) which is
applied on the onset of each period. For the algorithm to operate a number of parameters must
be first determined, such as population size, selection pressure, and probabilities of crossover
and mutation. To mitigate the problem of dependence of the results on the choice of the initial
parameters, we put forward a genetic algorithm with endogenous probabilities of crossover,
mutation, and selection pressure. This makes our algorithm a self-adapting solution technique
at the individual level (Gibbs et al., 2008). This procedure alleviates the tension in choosing
between exploitation of currently known forecasting rules (through crossover) and exploration
of seldom-tried forecasting rules (through mutation) that may respond more to the current state
of the market. The genetic algorithm routine is described in algorithm 1 at the appendix. In
what follows we provide details about each of its main operations.

We suggest the selection pressure S to be determined according to the Shannon entropy of
population fitness (San Jose-Revuelta, 2007),

S = 2+(N−2)

(
1−

N

∑
j=1

ṽ2
j,t logN ṽ2

j,t

)
, (4)

where S is rounded to the nearest integer, and ṽ2
j,t is the normalized average squared error given

by ṽ2
j,t = v2

j,t/∑
N
j v2

j,t . Thus, selection pressure is increased whenever the diversity of rule strengths
increases, as this diversity enhances the exploration of superior solutions.
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We suggest the bit-to-bit probability of crossover pc,i to be determined by

pc,i = (ci/k∗)(k/k∗) , (5)

where ci measures how many of the N rules have bit i matching with the current state of the
market4, k is the number of active rules, and k∗ is a parameter (see algorithm 1 at the appendix).
Whenever pc,i ends up greater than 1, the bit is directly cloned from the parents into the off-
spring. We consider the probability of mutation as simply the complement of the probability of
crossover. Once the mutation operator is activated, the bit is changed to one of the two alterna-
tive values, but always favoring the value matching the current state of the market, i.e., a 75%
probability of changing to a bit value matching the market state.

The forecasting parameters are also subject to genetic operations. Here, the probabilities of
crossover are given by the absolute difference between the parents parameters and the range of
possible values. Then, the crossover probability for the forecasting parameter b̂ j, e.g, is given
by

pc,b = |b̂1−b̂2|/(bsup−bin f ). (6)

As before, the probabilities of mutation are the complements of the probabilities of crossover.
Equation (6) captures the pursuit of intensifying exploitation (exploration) search when the
parents have diverse (similar) forecasting parameters.

However, given that the forecasting parameters are not bit-coded, but real-coded, its genetic
operations are formulated distinctly (see Herrera et al., 2003). Here, the parameters of the
offspring rule resulting from a crossover are generated by randomly drawing from a normal
distribution with mean equal to the average between the parents parameters, and variance given
by

σ
2
b = (b̂2

1−2b̂1b̂2+b̂2
2)/4, (7)

This crossover operation carries some additional degree of exploration search given that the
offspring parameters are randomly generated from an unbounded distribution. The mutation
operation is executed by simply adding a random shock proportional to the probability of mu-
tation.

The genetic algorithm (see algorithm 1 at the appendix) runs until the set of termination
criteria are met. Clearly, these define the main targets of the rule discovery algorithm. Criterion
4a characterizes the adaptation process as state-guided, criterion 4b guarantees convergence of
the forecasts, and criterion 4c prevents the algorithm to halt.

Although the termination criterion 4b reinforces the convergence of the genetic learning
rule, the forecasts resulting from the GBLCSA still carry some degree of uncertainty due to
genetic drift. We thus take averages of 10 runs of the algorithm as the final forecasts to attenuate
this problem and also to check for convergence. Ten runs proved to be enough to clear the
resulting forecasts from this uncertainty driven by genetic drift.

We now turn to discuss the benchmark algorithms. A recursive regressions algorithm
(RRA) is devised to access the same set of information as that of the GBLCSA, that is, the
l bits of market states. At each period, a return forecast is obtained by first estimating

r̂dri f t
t = α̂0 +

l

∑
i=1

α̂ibi,t−1 + β̂0rt−1 +
l

∑
i=1

β̂ibi,t−1rt−1, (8)

4A unit (1) value is summed to ci for each rule where the bit i is found to match exactly with the corresponding
bit of the market state, and half a unit (1/2) if the wildcard character # is found.
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and

r̂nodri f t
t = β̂0rt−1 +

l

∑
i=1

β̂ibi,t−1rt−1, (9)

using the least squares as well as all the past information. Then, the dependent variable is
projected to the next period by considering the estimated parameters and the current state of
the market. Equation (8) is related to the one that includes a drift in the GBLCSA (equation (1)),
while equation (9) is related to the driftless equation (2).

As a simpler benchmark, we also take a random walk algorithm (RWA) related to the mar-
tingale hypothesis (Campbell et al., 1997), which posits that the best forecast of tomorrow’s
price is simply today’s price. The driftless random walk forecast of the next period return
is thus zero, while the forecast from the random walk with drift is given by the past returns
average.

3 Data and Calibration

To make our case we take the stock of the company Petrobras listed on the Sao Paulo Stock Ex-
change (Bovespa). We take just one stock because the computational cost to run the GBLCSA
is high. The data comprise 276 data points, T , ranging from January 1987 to December 2009.
A portion of the data, H, is left out for out-of-sample analysis. We set H to a generous value
of 168 (January 1996 to December 2009). This leaves the starting in-sample estimation of the
RRA with a number of observations two times the number of parameters estimated. Choosing
a large H we reduce the risk of size distortions in the model evaluation stage (Ashley, 2003).

We consider 23 state conditions (table I) which involve information based on both techni-
cal and fundamental indicators. The technical indicators are historical moving averages com-
pared with the current level of a variable. The fundamental indicators are price-earnings, price-
dividends, price-book, and price-market index ratios along with real exchange rate, oil price,
and a dummy for macro stabilization period.

The data consist of accumulated values of one year and are taken from Economatica, Ipea-
data, and the Brazilian Central Bank. The real interest rate series is constructed from the
interbank certificate of deposit (CDI) rate accumulated over the month minus the inflation rate,
and then compounded to a yearly basis. The IPCA consumer price index is used as a deflator.
The oil price refers to the WTI quote in US dollars. The market index (of Bovespa) takes part
of the same base of prices to form bit 22.

The parameters determining the size of the search space for the forecasting equation, ain f ,
asup, bin f , bsup, are set in accordance to the sum of their related parameters in (8) and (9)
as obtained from:

(
ain f ,asup

)
= ∓max

∣∣α̂0 +∑
23
i=1 α̂ibi,t−1

∣∣ = ∓0.5231 ' (−0.55,0.55) and(
bin f ,bsup

)
=∓max

∣∣∣β̂0 +∑
23
i=1 β̂ibi,t−1

∣∣∣=∓3.1392' (−3.15,3.15) for the specification with

drift, and
(
bin f ,bsup

)
= ∓max

∣∣∣β̂0 +∑
23
i=1 β̂ibi,t−1

∣∣∣ = ∓1.7711 ' (−1.8,1.8) for the driftless
one.

The remaining parameters N, k∗, e, and τ are calibrated with an eye on the convergence and
predictive performance of the forecasts provided by the algorithm. Predictive performance is
tracked by the mean squared prediction error, while convergence is captured by the correlation
coefficient of the individual forecast series obtained from five repetitions of the algorithm.
Parameters N and k∗ showed no significant relationship with either predictive performance or
convergence, a result possibly generated by the proper design of the termination criteria. We
then set the lower values N = 100 and k∗ = 10% to cut down the computational cost of running
the algorithm. Setting parameter e to 50% helped find convergence. Parameter τ presented
a negative relationship with both convergence and predictive performance, thus suggesting a
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trade-off between accuracy and confidence in the forecasts provided by the GBLCSA. Setting a
unique value for τ would have masked this trade-off; we then considered three possible values:
τ = {0.3,0.6,0.9}.

This parameter setting along with the two forecasting specifications and the three proposed
predictors for the GBLCSA rendered us with a total 18 distinct series of forecasts. The bench-
mark algorithms each provided two distinct series related to the drift and driftless specifications.

4 Results

Figures 2 and 3 show the evolution of forecast errors for each algorithm following the approach
common in literature (see Enders, 2004, pp. 79-86). Here, we consider a mean squared pre-
diction error (MSPE) ratio test as well as the Diebold and Mariano (DM) (1995) test. These
are applied to the alternative specifications of the GBLCSA: with and without drift along with
the three different predictors. Further, the algorithms (GBLCSA, RRA, and RWA) and the al-
ternative specifications of the GBLCSA are individually evaluated by their predicted signal hit
rate.

In the MSPE ratio test, an F-statistic is constructed to compare two competing forecasting
models using the ratio of their MSPEs. Under the null hypothesis of equivalent forecasting
performance,

F = ∑
H
t=1(rt−r̂1,t)

2
/∑

H
t=1(rt−r̂2,t)

2, (10)

has a standard F-distribution with (H,H) degrees of freedom under three assumptions: (1)
the forecast errors are normally distributed with zero mean; (2) the forecast errors are serially
uncorrelated; and (3) the forecast errors are contemporaneously uncorrelated with one another.

Because we needed to compare 22 series, the test was applied 231 times. Results are shown
in table II. Panel A shows the comparisons of the three GBLCSA predictors through 18 pairwise
tests. We find that predictor 2 and 3 performed better than predictor 1. Panel B shows the
comparisons of the drift and driftless specifications through 11 pairwise tests. The driftless
specifications generally performed better, especially for the RRA and the GBLCSA. Panel C
shows the comparisons between the GBLCSA, the RRA, and the RWA through 28 pairwise
tests. Evidence is mixed regarding the RRA as opposed to the RWA; the driftless specification
of the RWA beats that of the RRA, whereas results are reversed for the specification with drift.
The RWA outperforms the GBLCSA for the specifications with drift. However, the GBLCSA
seems to outperform the RWA for the driftless specifications though this is not statistically
robust. Overall, the RRA outperforms the GBLCSA. In the driftless specification, this happens
in all the nine tests at the one percent significance level.

The Diebold-Mariano test relaxes some assumptions of the MSPE-ratio test by considering
the mean differential loss from using the forecasts coming from two competing models, that is,

DM =
1
H

H

∑
t=1

[
(rt−r̂1,t)

2−(rt−r̂2,t)
2
]
/
√

σ̂2
NW/(H−1), (11)

where σ̂2
NW is the Newey-West’s variance estimator. Under the null of similar forecast accuracy,

DM has a t-distribution with H−1 degrees of freedom. Considering the DM test allows one to
assess whether the previous results are robust to possible violations in the assumptions of the
MSPE ratio test. Table III shows that the results are overall the same. The RRA and the RWA
outperform the GBLCSA, though with reduced statistical significance.

Considering the number of times one algorithm forecast changes direction (signal) in com-
parison with the changing signal of actual data allows us to further compare the predictive
performance of the alternative algorithms. Dividing the number of time of changing signal by
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the total of forecasts leads to the hit rate measure, that is, the percentage of correctly predicted
signals. Under the null of randomly generated signals, the number of signal matches has a
binomial distribution B(168,0.5). Table IV shows the hit rates for each algorithm. Again, the
RRA outperforms the others, especially in the specification with drift.

5 Conclusion

We consider a relatively standard genetic-based learning classifier system algorithm and make
its key parameters endogenous. By making the probabilities of crossover, mutation, and selec-
tion pressure endogenous, we mitigate the problem of dependence of the results on the choice
of initial parameters. This makes our algorithm a self-adapting solution technique at the indi-
vidual level, also facilitating the convergence of the search process.

The forecasting performance of the improved algorithm is then contrasted with simpler
ones: a random walk and recursive regressions. We consider stock market data, rather than
data artificially generated. We find that the genetic-based classifier system fails to beat the
simpler algorithms. This result is at odds with the majority of the literature, which favors the
classifier systems but usually also considers most of its parameters as exogenous and neglect
the need of convergence of the learning algorithm in order to prevent diffuse forecasts.

Exploring some alternative specifications our analysis also evidenced that wider predictors
based on the population of rules into the classifier system outperform the narrower individual-
based predictor which is commonly employed in the literature. The driftless specifications of
the algorithms generally performed better, specially for those forecasting algorithms making
use of market states information. However, evidence is mixed regarding the recursive regres-
sions as opposed to the random walk model: the driftless specification of the recursive regres-
sions beats that of the random walk, whereas results are reversed for the specification with a
drift term. The random walk also outperforms the classifier system for the specifications with
drift.

Overall, the recursive regressions outperforms the learning classifier system irrespective of
the specification. These results are corroborated by two test statistics: the mean squared predic-
tion error ratio test and the Diebold-Mariano test. Also, considering the percentage of correctly
predicted signals we find that the recursive regressions outperform the other algorithms, es-
pecially in the specification with a drift. In short, our results cast doubts on the plausibility
of using learning classifier systems to represent agents process of expectations formation. We
emphasise, though, that the evidence presented is not incisive on this issue as it stands just as
case against the use of genetic-based learning classifier systems as forecasting devices. Further
research is needed for a comprehensive evaluation on this matter.
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A Supplementary Material (by order of appearance into the main text)

Figure 1: The genetic-based learning classifier system algorithm.
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Algorithm 1 The genetic algorithm routine.

1. From the starting subset of active rules (k-rules), elitism sets in to directly replicate a maximum
of E = eNk∗ active rules into the next generation of rules, favoring stronger rules if k > E, where
e ∈ [0,1] is the elitism parameter.

2. N−E offspring rules are then generated by the following steps:

(a) Two parents are selected by an S-sized tournament selection from the set of initial rules.

(b) Bit-strings for each of the two offspring are generated by applying a bit-to-bit crossover or
by cloning the two-parent bit strings.

(c) A bit-to-bit mutation operation is then applied.

(d) The forecasting parameters of the offspring are obtained by either crossing-over or cloning
the forecasting parameters of the parents.

(e) A mutation operation is then executed on the resulting forecasting parameters.

(f) The offspring strengths are set by mixing their parent variances v2
1 and v2

2 with a weighted
average; here, the weights are determined by the absolute difference between the predicted
returns of the offspring rule and the predicted returns of the parents rule, that is,

v2
o =

[
|r̂o,t−r̂2,t|/(|r̂o,t−r̂1,t|+|r̂o,t−r̂2,t|)

]
v2

1 +
[
|r̂o,t−r̂1,t|/(|r̂o,t−r̂1,t|+|r̂o,t−r̂2,t|)

]
v2

2,

where v2
o is the variance measure of the offspring rule and r̂o,t , r̂1,t , and r̂2,t are the predicted

returns of the offspring, the first parent, and the second parent rules, respectively.

(g) Finally, the strengths of the offspring are adjusted according to its performance (using equa-
tion (3)). A window of past data with size determined by 24τ is considered, which imposes
a maximum of 24 previous periods for evaluation and turns τ into a measure of memory
size. The resulting variance is then averaged with that obtained from the previous step.

3. The N−E offspring rules are merged with the subset of E active rules found in step 1.

4. The resulting population of rules is finally considered as a new initial set of rules and input in step
1; the routine goes on until three termination criteria are jointly met:

(a) The proportion of active rules k over the classifier system size N is greater than or equal to
a k∗ minimum proportion of active rules;

(b) The last three generations of forecasting rules lead to return forecasts with the same signal
for each predictor;

(c) The replications are restricted to a maximum of 100 loops.
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Table I: Condition bits.
Bit Type Condition Bit Type Condition
1 Technical Pt > Pt−1 12 Fundamental (Pt/Dt)rt > 1
2 Technical Pt > MA(P,6) 13 Tech./Fund. (Pt/Dt)> (Pt−1/Dt−1)

3 Technical Pt > MA(P,12) 14 Tech./Fund. (Pt/Dt)> MA(P/D,6)
4 Fundamental (Pt/Et)rt > 1 15 Tech./Fund. (Pt/Dt)> MA(P/D,12)
5 Tech./Fund. (Pt/Et)> (Pt−1/Et−1) 16 Tech./Fund. xt > xt−1

6 Tech./Fund. (Pt/Et)> MA(P/E,6) 17 Tech./Fund. xt > MA(x,6)
7 Tech./Fund. (Pt/Et)> MA(P/E,12) 18 Tech./Fund. xt > MA(x,12)
8 Fundamental (Pt/Bt)> 1 19 Tech./Fund. ot > ot−1

9 Tech./Fund. (Pt/Bt)> (Pt−1/Bt−1) 20 Tech./Fund. ot > MA(o,6)
10 Tech./Fund. (Pt/Bt)> MA(P/B,6) 21 Tech./Fund. ot > MA(o,12)
11 Tech./Fund. (Pt/Bt)> MA(P/B,12) 22 Fundamental Pt/It > 1

23 Fundamental t >July 1994
Pt : stock price; rt : interest rate; Et : corporate earnings per share; Bt : corporate accounting patrimonial
value per share; Dt : corporate dividends per share; xt : exchange rate; ot : oil price; It : stock market index;
MA(•,m) : moving average over the past m months.

Figure 2: Comparison of recursively accumulated MSPEs by algorithm (drift).
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MSPE: mean squared prediction error; RWA: random walk algorithm; RRA: recursive regressions algorithm;
GBLCSA: Genetic-based learning classifier system algorithm; the GBLCSA series of accumulated MSPE
refers to that obtained from the second type of predictor (arithmetic mean) and with a τ value of 0.9.

366



Economics Bulletin, 2012, Vol. 32 No. 1 pp. 354-369

Figure 3: Comparison of recursively accumulated MSPEs by algorithm (driftless).
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MSPE: mean squared prediction error; RWA: random walk algorithm; RRA: recursive regressions algorithm;
GBLCSA: Genetic-based learning classifier system algorithm; the GBLCSA series of accumulated MSPE
refers to that obtained from the second type of predictor (arithmetic mean) and with a τ value of 0.9.
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Table II: Summary of results obtained with the MSPE ratio test.

Testing pair

Number of times that Number of times that
No. Mean the 1st beats the 2nd the 2nd beats the 1st

tests MSPE
Total

Significant at
Total

Significant at
ratios 10% 5% 1% 10% 5% 1%

Panel A: GBLCSA Predictors Compared
Predictor 1 vs Predictor 2 6 1.3781 0 0 0 0 6 5 4 3
Predictor 1 vs Predictor 3 6 1.2009 0 0 0 0 6 3 1 0
Predictor 2 vs Predictor 3 6 0.8734 6 0 0 0 0 0 0 0
Panel B: Driftless vs Drift Specifications
Overall 11 0.7354 11 8 6 4 0 0 0 0
RWA driftless vs drift 1 0.9853 1 0 0 0 0 0 0 0
RRA driftless vs drift 1 0.3974 1 1 1 1 0 0 0 0
GBLCSA driftless vs drift 9 0.7452 9 7 5 3 0 0 0 0

Panel C: Algorithms Compared
RWA vs RRA 2 1.3124 1 1 1 0 1 1 1 1
Driftless comparison 1 1.8704 0 0 0 0 1 1 1 1
Drift comparison 1 0.7544 1 1 1 0 0 0 0 0

RWA vs GBLCSA 18 0.8874 12 8 7 3 6 1 0 0
Driftless comparison 9 1.0153 3 2 1 0 6 1 0 0
Drift comparison 9 0.7596 9 6 6 3 0 0 0 0

RRA vs GBLCSA 18 0.7748 15 10 9 9 3 1 0 0
Driftless comparison 9 0.5428 9 9 9 9 0 0 0 0
Drift comparison 9 1.0068 6 1 0 0 3 1 0 0

MSPE: mean squared prediction error; GBLCSA: Genetic-based learning classifier system algorithm; Predictor 1:
forecast obtained from the active rule with greater strength; Predictor 2: forecast obtained as a simple arithmetic
mean of the active rules; Predictor 3: forecast obtained as a strength-weighted average of the active rules; RWA:
random walk algorithm; RRA: recursive regressions algorithm.
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Table III: Summary of results obtained with the Diebold-Mariano test.

Testing pair

Number of times that Number of times that
No. Mean the 1st beats the 2nd the 2nd beats the 1st

tests DM
Total

Significant at
Total

Significant at
10% 5% 1% 10% 5% 1%

Panel A: GBLCSA Predictors Compared
Predictor 1 vs Predictor 2 6 0.0130 0 0 0 0 6 6 6 5
Predictor 1 vs Predictor 3 6 0.0078 0 0 0 0 6 6 6 4
Predictor 2 vs Predictor 3 6 -0.0052 6 6 6 6 0 0 0 0
Panel B: Driftless vs Drift Specifications
Overall 11 -0.0130 11 11 9 1 0 0 0 0
RWA driftless vs drift 1 -0.0005 1 1 1 0 0 0 0 0
RRA driftless vs drift 1 -0.0293 1 1 1 1 0 0 0 0
GBLCSA driftless vs drift 9 -0.0125 9 9 7 0 0 0 0 0

Panel C: Algorithms Compared
RWA vs RRA 2 0.0024 1 0 0 0 1 1 1 1
Driftless comparison 1 0.0168 0 0 0 0 1 1 1 1
Drift comparison 1 -0.0119 1 0 0 0 0 0 0 0

RWA vs GBLCSA 18 -0.0065 12 9 6 3 6 2 1 0
Driftless comparison 9 -0.0005 3 2 1 0 6 2 1 0
Drift comparison 9 -0.0125 9 7 5 3 0 0 0 0

RRA vs GBLCSA 18 -0.0090 15 9 9 8 3 0 0 0
Driftless comparison 9 -0.0173 9 9 9 8 0 0 0 0
Drift comparison 9 -0.0006 6 0 0 0 3 0 0 0

DM: Diebold-Mariano test statistic; GBLCSA: Genetic-based learning classifier system algorithm; Predictor 1:
forecast obtained from the active rule with greater strength; Predictor 2: forecast obtained as a simple arithmetic
mean of the active rules; Predictor 3: forecast obtained as a strength-weighted average of the active rules; RWA:
random walk algorithm; RRA: recursive regressions algorithm.

Table IV: Hit rates by algorithm.

Algorithms
Drift specifications Driftless specifications

Hit-rate (%) p-value Hit-rate (%) p-value
RWA 53.57 0.1579 47.62 0.7054
RRA 58.93 0.0083 56.55 0.0378

GBLCSA 50.13 0.4693 50.06 0.4693
RWA: random walk algorithm; RRA: recursive regressions algorithm;
GBLCSA: Genetic-based learning classifier system algorithm; p-value:
probability of obtaining a greater hit rate according to a binomial distri-
bution B(168,0.5); the hit-rates for the GBLCSA refer to averages within
the different specifications for this algorithms.
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