
     

 

 

  

  

Volume 31, Issue 3 

  

The role of the orbitofrontal cortex in human adaptive learning under strategic 
environments 

  

 
 

Kazuhiro Miyagawa  
Graduate School of Economics, Hitotsubashi University 

Tadanobu Misawa  
Graduate School of Science and Engineering, University 

of Toyama 

Tetsuya Shimokawa  
School of Management, Tokyo University of Science

Abstract 

This paper proposes an augmented learning model from a neuroscience perspective. This model contains brain activity 
data of the orbitofrontal cortex as a predictive variable of human strategic behavior. A Bayesian 3-layer perceptron, 
which shows the complex relationship between decision factors, was adopted to describe the learning behavior. 
However, the model's complexity creates the possibility of over tting. To avoid this problem, we adopt the Bayesian 
estimation and Akaike's Bayesian information criteria, which provide the statistical basis of the model selection, to 
select the model. Our experience shows that this model can better predict human strategic behavior than do existing 
behavioral learning models.
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1 Introduction

In recent years, significant changes have been introduced into the rational decision-making
models that had been used in classical economics models. One trend known as behavioral
economicsCamerer et al. (1995); Kahneman and Tversky (1979); Thaler (1999) tendsto
change rational decision-making from a behavioral approach. Another trend is called
neuroeconomics Camerer et al. (2005); Sanfey et al. (2006), which is based on rapidly
developing neuroscience findings. These 2 areas are complementary and the decision-
making process is elaborated by bounded rationality. Since 2000, several research groups
have reported a number of attempts to refine the various decision-making biases detected
by behavioral approaches by reconsidering them from a neuroscientific perspective. Two
studies in particular Breiter et al. (2001); Holroyd et al. (2004) used functional magnetic
resonance imaging (fMRI) and scalp electrical recordings to explore decision-making biases
of the prospect theory Kahneman and Tversky (1979); Tversky and Kahneman (1992)
from a brain activity perspective. In addition, with regard to time discounting Laibson
(1997); Loewenstein et al. (2003); Strotz (1955), several studies have indicated a difference
between the active regions involved in long and short-term activities from a neurosurgical
perspective McClure et al. (2007, 2004); Tanaka et al. (2004).

In this research, based on the findings of those studies, we elaborate the behavioral
learning model, a diachronic decision-making process, from the neuroscientific perspective
by analyzing the adaptive aspects of decision: making with regard to: how to adjust
oneself to the environment.

In the area of learning theory, several important models have already been proposed
by the behavioral approach (Camerer and Foundation (2003) provides a good review).
These include reinforcement learning models Bereby-Meyer and Erev (1998); Erev and
Roth (1996, 1998); Sutton and Barto (1998)1 and hybrids between reinforcement learning
and fictitious behavior, such as the experience-weighted attractionlearning(EWA) model
Camerer and Ho (1999). Although each has its own advantages and disadvantages, both
are known to have excellent behavior describability compared to the Nash equilibrium,
which predicts behaviors based on rationality. One method in particular Marchiori and
Warglien (2008) has shown an excellent learning model by using an index indicative of
certain forms of “regret”/ “fictive error”

The model proposed in this paper seeks to refine these behavioral models in 2 ways :
1. It refines the human learning process in strategic situations from the neuroscien-
tific perspective. Brain activity data of the medial prefrontal cortex (MPFC) and the
orbitofrontal cortex (OFC) in particular are examined as predictor variables of human
behavior. Both of MPFC and OFC are thought to be related to the reward system and
emotional feelings. MPFC is also considered to be related to cognitive activities.
2. It uses a statistically valid model that can demonstrate more complex relationships.
Many existing learning models are defined as linear predictors, but we can expect that
human decision-making is based on more complex relationships between factors. One
method used nonlinear predictors Marchiori and Warglien (2008). This group used a 1-
layer perceptron as a behavioral model in which the model parameters were exogenously

1To be precise, the reinforcement learning model used in economic models is often a reinforcement
comparison model which can be referred to as its simple version (Sutton and Barto (1998)).
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provided. In this research, a Bayesian 3-layer perceptron was adopted and the model pa-
rameters were estimated based on the Bayesian estimation. Three-layer perceptron was
used due to the limited accuracy of 1-layer perceptrons approximation. The complexity of
the model creates an overfitting possibility. To avoid the problem, we adopted Bayesian
estimation and Akaike’s Bayesian information criteria (ABIC), which provide a statistical
basis for model selection, to select the model.

Figure 1: The detail of experimental procedure.

2 Experimental procedures

2.1 Task

In this study, the repeated game experiment (Game Task) described below was performed.
Each of the games used in the experiment was 2 × 2 and had unique mixed-strategy
equilibrium. To ensure comparability of the results, we used 3 games that were the same
as the original and 1 referenced above (? The payoff matrices the subject faced were
decided at random so the predictability results of decision-making become independent
from the shape of the presented payoff function. The 29 subjects (27 men and 2 woman)
were healthy individuals 19-25 years of age, and the number of valid samples was 635
2. In the Game Task, the subject looks at the payoff matrix and chooses 1 of the 2
strategies. A computer then chooses a strategy and the results are displayed. While the
results are displayed on the payoff matrix, the resulting gains are also displayed with the
difference from the gains that could have been obtained from the other choice to explicitly
show the difference in gain and to put an emphasis on the fictive error. Figure:1 shows

2The reader should note that our examination has a limitation in the area of subject selection, i.e.,
the male-to-female ratio of subjects has a large bias. Although we observed the same data tendencies
in females as those in males in this cohort of limited female-centric data, the effect of this bias requires
further examination. We plan to examine this point in a future study.
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the procedures. Please refer to the Appendix for the experimental details. condition is
reached.

Figure 2: fNIRS prove and channel placement.

2.2 Brain data measurement

This experiment measured changes in the concentrations of oxygenated hemoglobin (oxyHb)
and deoxygenated hemoglobin (deoxyHb) during task performance using functional near
infrared spectroscopy(fNIRS) (fNIRStation; Shimadzu Corporation.) Instead of being
absorbed by body-composing substances like water, carbohydrates, and proteins, near-
infrared rays close to a wavelength of 800 nm readily pass through the skull and are readily
absorbed by hemoglobin in the brain. Based on the light absorption rate, fNIRS examines
changes in oxyHb and deoxyHb in the brain and thus measures brain site activation. The
fNIRS used in the current study provides multichannel measurement of a continuously
radiated and absorbed 3-wavelength laser (780, 805, and 830 nm).

fNIRS has the following substantial advantages not found with fMRI: subjects are less
restricted and can make decisions under relatively natural conditions; the higher temporal
resolution; less cost; and simultaneous measurement of multiple subjects. The environ-
mental factors are known to control human emotions and moods and thus substantially
affect economic decision-making. These advantages of fNIRS allow the measurement of
brain activity accompanying economic behavior that is exhibited while a subject is nor-
mally at work.

The timings of the brain data measurement are as follows.
(1) Select stage: The concentration of oxyhemoglobin alteration was measured 0.35 sec
after the payoff matrix was presented in step 2 of Figure 1. The feasible information of
the subject in this stage is based on past results and a presented payoff matrix.
(2) Result stage: The concentration of oxyhemoglobin alteration was measured 0.15 sec
after the result of this round was presented in step 4 of Figure 1. The newlyarrived
information in this stage is on an opponent’s action and is the realized payoff.

Figure 2 shows the NIRS probe and channel placement. In this experiment, the
probe was placed on the forehead for focus on the PFC. The 10-20 system was used
for electrode placement. The numbers in the white squares of Figure 2 are the channel
numbers of the fNIRS observation. In light of earlier studies using fMRI, the following
analysis especially focused on 2 areas: the MPFC, which is believed to better reflect the
reward system activity(Hampton and O’Doherty (2007); Knutson and Peterson (2005);
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Kuhnen and Knutson (2005)), and the OFC, which reacts to predicted gain and risk-
seeking behavior in the medial area and relates to predicted loss and risk aversion in the
lateral part. The sampling period was 175 msec.

The filters are sequentially adapted to Fast Fourier transforms. In most of the subjects,
the threshold frequency range was 0.25-0.30 Hz. In addition, because the magnitude of
the variations of the blood levels of oxyHb differs considerably between individuals, stan-
dardization between subjects (z-transformation) was conducted in order to superimpose
the data from all subjects.

3 An augmented learning model

In the experiment we mentioned, by using change of concentrations of oxygenated hemoglobin
(oxyHb) in cerebral blood, we examined how much we could predict subject behavior, i.e.,
which strategy each subject would choose. In concrete terms, we makes predictions on
the subjects’ next action using the currently chosen behavior and the changes oxyHb con-
centration in the regions corresponding to MPFC (channels 10-12 and 17, a few seconds
[“time select”] after the decision-making process regarding the STEP.2 strategy as shown
Figure 1) and OFC (channels 27 − 32, a few seconds [“time result”] after the display of
the STEP.4 result as shown in Figure 1).

As described hereinafter, these predictive factors were selected according to a statis-
tical criterion. The sites in the prefrontal cortex/channel adopted predictive model were
selected according to a statistical criterion. In light of earlier study findings, we consider
the sites in the prefrontal cortex that are related to cognitive activities and emotional
feelings as candidate predictive factors. The most effective site/channel was selected in
each measurement stage (selection stage and result stage) according the hyperparame-
ter marginal likelihood (HML) / Akaike’s Bayesian information criterion (ABIC). The
effectiveness of each candidate site in each stage is shown in Table 1 in Appendix.

In one study Marchiori and Warglien (2008), a single-layer perceptron was adopted
as a predictive model, and its parameters were given deterministically on the basis of
a trial-and-error process. In contrast, in this study, a 3-layer perceptron was used and
its parameters were statistically learned using a hierarchical Bayesian approach MacKay
(1992a,b); Neal (1996). We used standardization data (z-transformation) to make it pos-
sible to overlap the current gains with those of different games. Hierarchical Bayesian
estimation was conducted to estimate the model parameters, and Markov Chain Monte
Carlo methods were used in the algorithm, whereas in the model evaluation, hyperpa-
rameter marginal likelihood (HML) corresponding to ABIC was used in addition to mean
squared deviation (MSD). The reason for the use of a three-layer perceptron was that the
complicated nonlinear relationship between the changes in oxyHb concentration in the
cerebral blood and the decision-making is possible to approximate. A 3-layer perceptron
can theoretically approximate any continuous relation.

In addition, the reason for performing statistical learning was that in an analysis of
noisy data such as biological data, it is suitable to use stochastic classifier, and also by
learning statically, it enable to select proper robust model like considering over fitting.
The parameters of the predictive model are learned through use of the first two-thirds of
each subject’s data. Subject decision-making was predicted using the remaining one-third
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of the data.
Details of the predictive model and the Bayesian estimation are as follows. With the

strategy i (t) for the task t as an explained variable and with the vector of the explanatory
variable (or learning factor) for the task t as x (t), a decision-making model is formulated
as follows:

 

Figure 3: 3-layer perceptron.

i(t) = f(x(t); θ) + ε ∀t, (1)

where

ε ∼ N

(
0,

1

β

)
, (2)

f(x; θ) =
h∑

k=1

ak · σ

(
n∑

i=1

bkixi + ck

)
+ d, (3)

σ(u) ≡ 1

1 + exp(−u)
, (4)

θ ≡ (a, b, c) . (5)

In addition to the strategy of the previous period, the extent of changes in oxyhb
observed in each channel was used for the vector of the explanatory variables x. Figure3
shows the 3-layer perceptron structure. Parameter ak is the weight with regard to output
from k hidden units and represents the extent of the effect of k hidden units on explained
variable. Parameter bki is the weight representing the effect of i factors on k hidden
units. Parameter ck controls the threshold for neurons in k hidden units to fire. A normal
distribution with a precision of αi is used as the prior distribution of each parameter θi.
That is,

θi ∼ N

(
0,

1

αi

)
. (6)
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Additionally, the prior distribution of the hyperparameter αi governing this prior distribu-
tion is assumed to be a gamma distribution. Moreover, a gamma distribution is similarly
used as the prior distribution for hyperparameter β, which controls model noise.

Increasing a model’s complexity has the advantage of increasing its explanatory abil-
ity, but there is a substantial risk of decreasing its extendability due to overfitting. In
particular, special attention is required for the data that have a relatively large amount
of noise, like those from a live subject. Selection of a model using HML in a hierarchical
Bayesian framework is a way to manage this problem. Using this criterion, the model is
assessed with HML.

Table 1: Results of prediction by using 3-layer perceptron Model.

selection result HML MSD
stage stage h improvement rate

-306.1936 0.4103
without Hb - - 2 - -

channel channel -286.9153 0.2482
with Hb 11 32 2 6.30% 39.51%

P ({i(t), x(t)}t|α, β) (7)

=

∫
P ({i(t), x(t)}t|θ, β)P (θ|α)dθ

This value is the amount corresponding to ABIC and is sometimes also called “evidence.”
When specifically calculated in the current design with N as the number of observed dat

P ({i(t), x(t)}t|α, β) (8)

= (
β

2π
)
N
2

∫
exp

{
−γ

2

}
dθ,

where

γ = β
∑
t

(i(t)− f(x(t); θ))2 +
∑
c

αc ∥θc∥2. (9)

This reveals that factors and hidden units with a large estimated α cause a substantial
decrease in hyperparameter marginal likelihood (and are thus invalid).That is, in this
criterion α functions as a penalty with regard to the number of factors and hidden units.
Normally, penalty weight is often controlled exogenously, but in a hierarchical Bayesian
framework penalty weight α can be endogenously determined.

The results of the prediction on strategies using a 3-layer perceptron are shown in Table
1. The second column of the table shows the channel that was used for the MPFC data
after the strategic decision-making occurred, while the third column shows the channel
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that was used for the OFC data after the results are displayed. Moreover, “h” depicts
the number of hidden units while ”improvement rate” shows how much the model that
adopted the change in concentration of blood oxyHb improved compared with the model
that did not adopt it. “Without Hb” in the second row shows the results from the models
that did not consider blood oxyHb, whereas the third row shows the results of the models
in which oxyHb level was taken into consideration.

As shown in Table 1, it could be understood that by including the blood oxyHb levels
relevant to MPFC (channel 11) and OFC (channel 32) among the factors for the predictive
model, HML showed a 6.3% improvement compared to the 3-layer perceptron models in
which those factors were not used. The MSD was approximately 0.248 in the predictive
power test using the latter one-third of the data, and there was 40% improvement com-
pared to the models in which the data on the concentration of oxyHb in the blood was
not taken as a factor. From the correspondence between HML and MSD shown in the
table, it was found that our predictive model did circumvent the overfitting problem.

Table 2: Results of prediction by using Nash Equilibrium and Random Strategy Model.

Our model (with Hb) Nash Random EWA Fictitious play

MSD 0.2482 0.485 0.495 0.271 0.3578

Table 3: Results of prediction by using 3-layer perceptron Model(limited subjects who
achieved all 30 trials).

selection result HML MSD
stage stage h improvement rate

-152.9894 0.4823
without Hb - - 2 - -

channel channel -139.2313 0.24202
with Hb 11 32 2 8.99% 49.82%

Moreover, MSD is defined as follows:

MSD ≡
T∑
t

{i(t)− f(x(t); θ)}2

T
, (10)

where i (t) is the next strategy (observed value) in task t, f (t) is the next strategy
(theoretical value) predicted on the basis of the learning model in task t, and T is the
number of decision-making used for verification.

Here, the predictions based on the 3-layer perceptron models were compared with the
Nash equilibrium, which represents rational decision-making models adopted in classi-
cal economics with predictions of the subjects’ strategies based on the Random strategy,
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which assumes that people are not rational at all, and with the predictions on the tradi-
tional behavioral learning models (EWA and Fictitious play). Table 2 shows the MSDs,
which is the same to what was defined earlier, are derived from these behavioral hypothe-
ses. We can observe that our model provided a good description of strategic behavior
compared to other models.

Lastly, we should address a robustness of our result to sample data selection. In our
experience, the frequency of trials of a subject is theoretically 30. However, when the
concentration of deoxyhemoglobin in a subject’s blood largely surpassed that of oxyhe-
moglobin, we removed these data from the sample analysis because cognitive deterioration
of the subject is expected. In addition, the experiment was interrupted at that time when
the subject declared that his or her physical condition was unfavorable. To show that our
analytical results are robust for this non-uniform trial frequency, we tried to re-examine
the results of limited subjects who achieved all 30 trials. Table 3 shows the re-examination
results. Our model still exceeds the benchmark models and the brain data provide addi-
tional information.
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Appendix: The role of the orbitofrontal cortex in human’s

adoptive learning under strategic environments.

August 11, 2011

1 Game Design

The gains from the 2-by-2 games - which had unique mixed strategy equilibrium used in the Game Task
-, and the Nash equilibrium (N.E.) were as described below. In order to make it possible to compare the
results, games No.1 − 3 were the same as those used in Marchiori and Warglien’s work (2008), whereas
game No.4 was an original one.

� GAME1

XXXXXXXXXXplayer
computer

strategy 1 strategy 2 player’s N.E.

strategy A 3 , 7 8 , 2 3/8
strategy B 4 , 6 1 , 9 5/8

computer’s N.E. 7/8 1/8 @
@@

� GAME2

XXXXXXXXXXplayer
computer

strategy 1 strategy 2 player’s N.E.

strategy A 3 , -3 1 , -1 6/7
strategy B 9 , -9 3 , -3 1/6

computer’s N.E. 1/7 6/7 @
@@

� GAME3

XXXXXXXXXXplayer
computer

strategy 1 strategy 2 player’s N.E.

strategy A 1 , 0 0 , 1 1/2
strategy B 0 , 1 1 , 0 1/2

computer’s N.E. 1/2 1/2 @
@@

� GAME4

XXXXXXXXXXplayer
computer

strategy 1 strategy 2 player’s N.E.

strategy A 13 , 4 4 , 13 13/22
strategy B 2 , 15 15 , 2 9/22

computer’s N.E. 1/2 1/2 @
@@
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Figure 1: The detail of experimental procedure.

2 Details of the Experiment Procedure

Each step of experiment showed in Figure1 is as follows.

STEP.1: Start
The changes in haemoglobin concentration in the cerebral blood were measured in a situation where
the subjects were given no encouragement for a certain length of time; and then, the game was
started.

STEP.2: The subject’s decision-making
The subjects look at the 2-by-2 payoff matrix, and choose whether to take action according to
strategy A or according to strategy B.

STEP.3: Rest (5-15sec.)
The strategy chosen by the subject is marked (blue), and the subject rests until the data on the
changes in haemoglobin concentration in the cerebral blood from 50 previous samples (8.75 seconds)
fall from their mean value to within ±σ (the standard deviation of the data on the changes in
haemoglobin concentration in the cerebral blood obtained in STEP 1) (stable condition).

STEP.4: Display of Results 1 (2.5sec.)
A computer selects an action from either strategy 1 or strategy 2, and the resulting gains are
displayed on the payoff matrix (red).

STEP.5: Display of Results 2 (2.5sec.)
The obtained gains (“obtained”) are displayed, along with the gains which could have been obtained
if the other alternative had been chosen (“unobtained”). That is, in the example in Figure 1,
assuming that the computer took the behavior corresponding to strategy 2, and that the gain from
strategy A chosen by the subject is “obtained”, the gains that could have been obtained from
strategy B which was not chosen by the subject are displayed as “unobtained”. This “unobtained”
is some sort of opportunity cost, and the difference between the obtained and unobtained is also
called a fictive error.

STEP.6: Rest (3-15sec.)
The sign (x) is displayed, and like in STEP.3, the subject rests until a stable condition is reached.

STEP.7: Repeat
STEP.2 to STEP.6 are repeated to a maximum of 30 times (with consideration for the subject’s
physical condition).

2
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Table 1: The effectiveness of all candidate cites in each stage.

channel selection stage result stage
ch1 -290.4766 -294.3243
ch2 -301.5592 -327.5683
ch3 -290.9134 -305.1513
ch4 -290.6657 -289.2597
ch5 -300.9882 -296.1476
ch6 -317.0926 -310.7114
ch7 -289.2811 -292.2114
ch8 -289.1663 -309.6956
ch9 -290.8586 -298.5074
ch10 -292.0314 -290.8465
ch11 -288.6281 -289.3001
ch12 -291.9021 -289.3260
ch13 -364.2536 -296.3957
ch14 -288.9639 -324.0938
ch15 -290.0176 -289.6878
ch16 -325.9317 -290.2845
ch17 -288.8450 -289.0319
ch18 -291.9057 -307.9741
ch19 -290.4226 -290.5160
ch20 -294.5828 -294.5828
ch21 -291.6889 -291.9336
ch22 -289.3562 -314.3330
ch23 -289.1478 -291.4767
ch24 -298.3892 -308.0825
ch25 -289.9938 -296.1303
ch26 -295.5469 -289.3074
ch27 -298.2945 -289.8746
ch28 -311.9935 -290.4932
ch29 -289.3037 -294.3163
ch30 -289.4415 -289.6579
ch31 -296.0695 -303.0191
ch32 -320.4847 -289.0230

3 Brain data selection

This table shows the hyperparameter marginal likelihood (HML) when each channel’s data is involved
in model. The most effective site/channel was selected in each measurement stage (selection stage and
result stage) according HML / Akaike’s Bayesian information criterion (ABIC).
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