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1 Introduction

The Stackelberg (1934) model is a sequential model embodying two �rms, one
leader and one follower. They both have perfect information about the market
demand function. The leader �rm moves �rst and makes its decision taking into
account the reaction of the follower, which is correctly perceived (Negishi and
Okuguchi (1972)). The follower rationally sets its own output level according
to any quantity set by the leader, with the expectation that the leader will
not counter-react. Similarly, the leader may expect the follower to conform to
his best strategy. In a Stackelberg equilibrium, beliefs are self-ful�lled, and are
therefore an essential feature of such a kind of economies.
In this note, we provide a conjectural interpretation of the Stackelberg equi-

librium concept. We consider conjectural variations in a static deterministic
model with many �rms. These conjectures capture the way a �rm anticipates
the reactions of its rivals when it decides to increase its supply by one unit,
in a simultaneous game (Bowley (1924), Friedman and Mezzetti (2002), Figu-
ières et al. (2004)). In our model, we assume an asymmetry in the formation
of beliefs: some �rms (type 1) make conjectures while others (type 2) do not.
The asymmetry could be justi�ed for instance by some di¤erences on costs that
would put �rms in asymmetric positions, and thus cause them to formulate some
asymmetric conjectures.1 But, the foundations of such an asymmetry is out of
scope in this paper. The distribution of �rms between each group is assumed to
be exogenous. In our model, no sequential structure is assumed regarding the
timing of decisions.
In the conjectural variations literature, signi�cant research has been devoted

to local consistency of static conjectures (Figuières et al. (2004)). In our frame-
work, a locally consistent equilibrium is such that each type 1 �rm is able to
correctly perceive the slopes of the reaction functions of both type 2 �rms and
their competitors. This means that conjectures coincide with the true values of
the slopes of reaction functions (Bresnahan (1981), Perry (1982), Ulph (1983)).
We consider symmetric (within a cohort) constant conjectural variations (Bow-
ley (1924), Figuières et al. (2004), Perry (1982)).2 It is known that under
constant marginal costs, the competitive equilibrium turns out to be the only
consistent equilibrium (Bresnahan (1981), Perry (1982)). The existence of an
asymmetry in the formation of beliefs complicates the modelling of conjectures
since it introduces indirect e¤ects. Hence, the preceding result still holds in our
model.
Within the same economy, we also study a sequential Stackelberg model à la

Daughety (1990), without assuming any speci�c form for the demand function
and for the cost functions. We consider the relationship between the sequential
Stackelberg equilibrium and the equilibrium of the simultaneous move game for

1 Introducing an asymmetry in costs between �rms could allow to endogenize their type.
Similarly, the timing of positions is often exogenous in Stackelberg competition, while it can
be grounded on costs asymmetries (Van Damme and Hurkens (1999)).

2By constant conjectural variations we mean that the formation of conjectures do not vary
with a change in the strategy of a leader.
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this same basic economy in case of asymmetric conjectural variations. We then
extend a literature which considers conjectural variations as useful tools to easily
capture in a general model various oligopoly con�gurations (perfect, Cournotian
and collusive competitions). A synthesis of this approach has been provided by
Dixit (1986), in which the Stackelberg equilibrium has not been studied. Two
propositions are proved. We �rst show that there exists a continuum of conjec-
tural variations such that the conjectural equilibrium locally coincides with the
Stackelberg equilibrium (Proposition 1). Second, we de�ne the conditions under
which a conjectural equilibrium is a locally consistent equilibrium (i.e. such that
conjectures are ful�lled). The concept of (local) consistency is restricted to �rms
making conjectures. Two conditions on consistency are featured: consistency
within a cohort and consistency among cohorts. The Stackelberg equilibrium
ful�lls only the latter condition (Proposition 2). We provide an example illus-
trating these two propositions. Studying a linear economy, we notably show
that the conjectural equilibrium may coincide with the multiple leader-follower
Stackelberg equilibrium model developed by Daughety (1990). In addition, in
case of asymmetry, the competitive equilibrium is locally consistent.
The paper is organized as follows. In section 2 the model is featured. Section

3 provides a de�nition and a characterization of the conjectural equilibrium. Sec-
tion 4 states two propositions reagarding the Stackelberg equilibrium. In section
5, we give an example for a linear economy to illustrate both propositions. In
section 6, we conclude.

2 The model

Consider an oligopoly industry with n �rms which produce an homogeneous
good. There are two types of �rms, labeled 1 and 2, so the industry includes n1
�rms of type 1 and n2 �rms of type 2, with n1 + n2 = n. Type 1 �rms make
conjectures regarding the reaction of other type 1 �rms as well as type 2 �rms
to a change in their strategy, while type 2 �rms are assumed not not to make
any conjecture (see thereafter).

Let p(X) be the price function for the industry (the inverse of the market
demand function), where X denotes industry output. We assume dp(X)dX < 0 and
d2p(X)
dX2 � 0. Let xi1 and x

j
2 represent respectively the amounts of good produced

by �rm i, i = 1; :::; n1, and j, j = 1; :::; n2. Assume X = X1 + X2, where
X1 =

Pn1
i=1 x

i
1 and X2 =

Pn2
j=1 x

j
2, denote respectively aggregate output of type

1 �rms and type 2 �rms. In what follows, we also denote X�i
1 =

P
�i x

�i
1

(resp. X�j
2 =

P
�j x

�j
2 ) the output of all type 1 (resp. 2) �rms but i (resp. j).

In addition, it is assumed that p(X) is continuous.

The cost function of any �rm i or j is denoted by ci1(x
i
1), i = 1; :::; n1 or

cj2(x
j
2), j = 1; :::; n2. We assume ci1(:) = c1(:)for all i and c

j
2(:) = c2(:) for all

j. In addition, dc
i
1(x

i
1)

dxi1
> 0 (dc

j
2(x

j
2)

dxj2
> 0) and d2ci1(x

i
1)

d(xi1)
2 � 0 (d

2cj2(x
j
2)

d(xj2)
2
� 0). The
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pro�ts functions of �rms i and j may be written:

�i1 = p(X)xi1 � c1(xi1), 8i = 1; :::; n1,
�j2 = p(X)xj2 � c2(x

j
2), 8j = 1; :::; n2.

(1)

Conjectural variations formed by �rm i are denoted by �i1 (respectively �
i
2)

for i = 1; :::; n1, and characterize the beliefs of �rm i as for the reaction of type 1
�rms (respectively type 2 �rms), to a one unit increase of its output (Bresnahan
(1981), Perry (1982)). Following Perry (1982), we only consider constant con-
jectures, so beliefs of a �rm are independent of the supply of the others. Other
speci�cations are conceivable (Figuières et al. (2004)).

Formally, the conjectural variations may be de�ned as follows:

�i1 =
dX�i

1

dxi1
(2)

�i2 =
dX2

dxi1
, i = 1; :::; n1,

where �i1 2 [�1; n1 � 1] and �i2 2 [�1; n2] represent intracohort and intercohort
conjectures respectively, that is conjectures formed by �rm i regarding the slope
of the aggregate reaction functions of type 1 �rms and type 2 �rms.3 In the
following, we will only focus on the symmetric case, i.e. �i1 = �1 and �i2 = �2
for i = 1; :::; n1.
We must consider �1 + �2 � �1. Among the market outcomes usually fea-

tured, three cases are of particular interest. Perfect competition corresponds to
�1 + �2 = �1. In this case, each �rm of type 1 expects their direct rivals to
absorb exactly its supply expansion by a corresponding supply reduction, so as
to leave the price unchanged. When �1 = 0 and �2 = 0, �rms expect no reaction
to its change in supply: this is the Cournotian case. Finally, when �1 = n1 � 1
and �2 = n2, the market is collusive. Among the possible con�gurations, it is
worth considering the cases for which type 1 �rms form correct expectations.

In this model, �rms - whether of type 1 or 2 - play simultaneously. The
players are the �rms, the strategies are their supply decisions and the payo¤s
are their pro�ts.

De�nition 1 An economy is a game � corresponding to a vector of 2n compo-

nents, including n strategies and n payo¤s � �
�
xi1; x

j
2; �

i
1; �

j
2

�j=1;:::;n2
i=1;:::;n1

.

3This property holds in case on symmetry across �rms (see Dixit (1986)).
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3 Conjectural equilibrium: de�nition and char-
acterization

Before dealing with the characterization of the conjectural equilibrium (CE), we
provide a de�nition of it.

3.1 De�nition

De�nition 2 A conjectural equilibrium for the economy � is given by a vector

of strategies
�
~xi1; ~x

j
2

�j=1;:::;n2
i=1;:::;n1

and a 2-tuple of conjectural variations � = (�1; �2)

such that for any i = 1; :::; n1 and any j = 1; :::; n2:
(i) �i1(~x

i
1(�); ~x

�i
1 (�); ~x

j
2(�)) � �i1(x

i
1(�); ~x

�i
1 (�); ~x

j
2(�)) for all x

i
1 6= ~xi1

(ii) �j2(~x
i
1(�); ~x

j
2(�); ~x

�j
2 (�)) � �j2(~x

i
1(�); x

j
2(�); ~x

�j
2 (�)) for all x

j
2 6= ~x

j
2.

A conjectural equilibrium is a non cooperative equilibrium of game �. In the
equilibrium, each �rm i determines a strategy ~xi1 according to the conjectures
�1 and �2, such that no deviation is able to increase its pro�t �i1 when the
strategies of the others remain unchanged. In addition, each �rm j, j = 1; :::; n2
determines its optimal strategy ~xj2 by taking as given the strategies of all other
�rms. Firms of type 2 do not make conjectures regarding unilateral deviations.
This corresponds to a Nash equilibrium conditional on expectations formation.
We now provide a full characterization of a CE.

3.2 Characterization of the CE

Given (1), programs of �rms i and j may be written:

xi1 2 argmax p(X)xi1 � c1(xi1), i = 1; :::; n1,
xj2 2 argmax p(X)xj2 � c2(x

j
2), j = 1; :::; n2.

(3)

The �rst-order conditions are given by:

p(X) + (1 + �1 + �)
dp(X)

dX
xi1 �

dc1(x
i
1)

dxi1
= 0, (4)

p(X) +
dp(X)

dX
xj2 �

dc2(x
j
2)

dxj2
= 0, (5)

where � � @X2

@xi1
and �1 =

dX�i
1

dxi1
=

@X�i
1

@xi1
. It di¤ers from dX2

dxi1
because dX2

dxi1
=

@X2

@xi1
+ @X2

@X�i
1

dX�i
1

dxi1
= �(1 + �1), with @X2

@X�i
1

= @X2

@xi1
from the symmetry of xi1 and

X�i
1 in the reaction function of type 2 �rms (equation 5). By rearranging the

equality, it comes that � = �2
1+�1

. Finally, as �1 + �2 � �1, � 2 [�1; 0].
These optimal conditions above implicitly de�ne the best response function

of both types of �rms: xi1 = �1(X
�i
1 ; X2;�) and x

j
2 = �2(X1; X

�j
2 ). In the

symmetric equilibrium, xi1 = x1 for i = 1; :::; n1 and x
j
2 = x2 for j = 1; :::; n2,
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so one gets x1 = ��1(n1; X2;�) and x2 = ��2(n2; X1). The expected value of
� can be deduced from �1 and �2 by di¤erentiating X2 = n2��2(n2; X1). By
substituting X2 in ��1, we therefore obtain the equilibrium strategy of a type 1
�rm: ~x1(�) = ~�1(n1; n2;�). The equilibrium strategy of a type 2 �rm is then
deduced: ~x2 = ~�2(n1; n2;�). And the equilibrium pro�ts can be derived: ~�i1 =
~�1(n1; n2;�) for any i = 1; :::; n1 and ~�

j
2 =

~�2(n1; n2;�) for any j = 1; :::; n2.

4 Conjectural and Stackelberg equilibria

We now prove under which conditions the CE (locally) coincides with the Stack-
elberg equilibrium (SE). We �rst de�ne a SE. Consider that type 1 �rms denote
leaders, while type 2 are the followers. So, as in Daughety (1990), the industry
now includes n1 leaders and n2 followers, with n1 + n2 = n.

De�nition 3 A Stackelberg equilibrium is given by a (n1 + n2)-tuple of strate-

gies
�
x̂i1; x̂

j
2

�j=1;:::;n2
i=1;:::;n1

such that for any i = 1; :::; n1 and for any j = 1; :::; n2

(i) �i1(x̂
i
1; x̂

�i
1 ; x̂j2(x̂

i
1; x̂

�i
1 )) � �i1(x

i
1; x̂

�i
1 ; xj2(x

i
1; x̂

�i
1 )), for all x

j
2(x

i
1; x̂

�i
1 ) and

xi1 6= x̂i1,
(ii) �j2(x̂

j
2; x̂

�j
2 ) � �j2(x

j
2; x̂

�j
2 ) for all x

j
2 6= x̂j2.

In a Stackelberg equilibrium, all �rms optimize their pro�t function, and
beliefs are self-ful�lled. Leaders and followers play a Cournot game within their
respective cohort. The game is played under complete but imperfect information
among leaders and among followers. However, leaders have perfect information
about the reaction function of the followers. Existence and uniqueness of the SE
are skipped (see DeMiguel and Xu (2009), Sherali (1984), Sherali et al. (1983)).

Proposition 1 There exists a continuum of conjectural variations such that the
conjectural equilibrium locally coincides with the Stackelberg equilibrium.

Proof. Equations (4)-(5) implicitly determine the equilibrium strategies when
�rm i, i = 1; :::; n1, conjectures the slopes of the aggregate reaction functions.
In a SE, the reaction function of �rm j is obtained from pro�t maximization,

for given strategies of the leader X1, and de�ned by x
j
2 =  2(X1; X

�j
2 ). In the

symmetric case, the reaction function becomes: x2 = � 2(n2; X1). The program
of leader i is:

xi1 2 argmax p(xi1 +X�i
1 +

Xn2

j=1
� 2(n2; X1))x

i
1 � c1(xi1), i = 1; :::; n1.

For any i = 1; :::; n1 and j = 1; :::; n2, the two �rst-order conditions sequen-
tially obtained are given by:

p(X) +
�
1 + �i

� dp(X)
dX

xi1 �
dc1(x

i
1)

dxi1
= 0, (6)

p(X) +
dp(X)

dX
xj2 �

dc2(x
j
2)

dxj2
= 0. (7)
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where �i = n2
@ � 2
@xi1
(n2; X1) is the actual slope of type 2 �rms�aggregate reaction

function: In equilibrium, one gets �i = n2
@ � 2
@xi1
(n2; X̂1) for i = 1; :::; n1.

Equation (7) above is identitical to equation (5). Let �1 + � = �, that is
�1+

�2
1+�1

= �, be the conjecture of type 1 �rms in a CE. The preceding system
collapses to the system de�ned by equations (4)-(5). Thus, the CE locally
coincides with the SE. QED.

Remark 1 Notice that while the two equilibria coincide for �1 = 0 and �2 =
� = �, they also coincide for an in�nite number of values for �1 and �2 such
that �1 + � = � or �2 = � + (� � 1)�1.

Proposition 1 states that the equilibrium outcome of a simultaneous move
game collapses to the equilibrium outcome a Stackelberg sequential game in
which a cohort of agents make expectations regarding the impact of their deci-
sions on the choices of another cohort of agents. We then complete the analysis
of Dixit (1986) by showing that conjectural variations can also be useful to
represent the Stackelberg market outcome in a static game. When embodying
intercohort conjectural variations, the framework exhibits a large number of
solutions corresponding to the Stackelberg market outcome.
We now focus on locally consistent CE.4

De�nition 4 A locally intercohort-consistent conjectural equilibrium for � is a
CE with �2 = n2

d��2
dxi1
(n2; ~X1) and � = �2

1+�1
, where n2��2 is the aggregate reaction

function of type 2 �rms.

A locally intercohort-consistent CE restricts the consistency to intercohort
conjectures, i.e. to type 1 �rms�conjectures regarding type 2 �rms�reactions.
But it presumes that �2 must be correctly expected, without implying ful�lled
conjectures on �. It de�nes a partially consistent equilibrium.

De�nition 5 A locally intracohort-consistent conjectural equilibrium for � is a

CE with �1 =
d���i1
dxi1

(n1; ~x
i
1;
~X2), where ��

�i
1 is the aggregate reaction function of

type 1 �rms but i.

A locally intracohort-consistent CE restricts the consistency to intracohort
conjectures; i.e. to any type 1 �rm�s conjectures regarding other type 1 �rms�
reactions. It also de�nes a partially consistent equilibrium.

De�nition 6 A locally consistent conjectural equilibrium for � is an intracohort
and intercohort consistent CE.

A locally consistent CE is an equilibrium strategy ~xi for each i such that no
�rm perceives an incentive to change its supply, which is based on conjectural
variations, assumed to be a correct assessment of type 1 and type 2 �rms. Each
�rm i is then able to correctly perceive the equilibrium values of the slopes of
the two aggregate reaction functions.

4 In an oligopoly framework, local consistency has been de�ned by Bresnahan (1981), Perry
(1982) and Figuières et al. (2004).
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Proposition 2 Within the set of CE which coincide with the SE, a necessary
condition for a SE to be a locally consistent CE is �1 = 0. In that case, �2 = � =

n2
@ � 2
@xi1
(n2; X̂1) = �1. Then the SE converges toward the competitive equilibrium.

Proof. According to def. 4 and 5, a locally consistent CE satis�es �1 =
@ ���i1
@xi1

(n1; ~x
i
1;
~X2) and �2 = n2

@��2
@xi1
(n2; ~X1). Equations (5) and (7) being identical,

the aggregate reaction function of type 2 �rms must be equivalent in both the
CE and the SE. As a consequence, in the equilibrium, their slopes must be
equal; i.e. �2 = n2

@��2
@xi1
(n2; ~X1) = n2

@ � 2
@xi1
(n2; ~X1) = �.

To construct the locally consistent CE, we must determine the best responses
of all type 1 �rms but i and of all type 2 �rms. We follow a procedure given
by Perry (1982) for the oligopoly case. The aggregate reaction functions of
type 1 �rms but i and type 2 �rms are implicitly obtained from the �rst-order
conditions (4) and (5) of �rms �i and j respectively:

p(X) + (1 + �1 + �)
dp(X)

dX

X�i
1

n1 � 1
�
dc1

�
X�i
1

n1�1

�
dx�i1

= 0,

p(X) +
dp(X)

dX

X2

n2
�
dc2

�
X2

n2

�
dx2

= 0,

where X2 = n2��2(n2; X1), and X
�i
1 � ���i1 (n1; x

i
1; X2).

Di¤erentiating implicitly the preceding equations, one gets in the symmetric
equilibrium:

dX�i
1

dxi1
= �

(1 + �)
h
dp(X)
dX + (1 + �1 + �)

d2p(X)
dX2

~X�i
1

n1�1

i
n1(1+�)+�1

n1�1
dp(X)
dX + (1 + �)(1 + � + �1)

d2p(X)
dX2

~X�i
1

n1�1
� 1

n1�1
d2c1
d(xi1)

2

,

dX2

dxi1
= �

h
dp(X)
dX + d2p(X)

dX2

�
~X2

n2

�i�
1 +

dX�i
1

dxi1

�
�
n2+1
n2

�
dp(X)
dX + d2p(X)

dX2

�
~X2

n2

�
� 1

n2
d2c2
d(xj2)

2

.

According to De�nitions 4 and 5, a consistent CE must satisfy the next three
conditions:

(C1)
dX�i

1

dxi1
= �1

(C2)
dX2

dxi1
= �2 = �

(C3) �2 = �(1 + �1).

According to Proposition 1, the conjectural equilibria which coincide with
the SE, are de�ned by �1 + � = �. This equality and condition (C2) are jointly
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satis�ed provided �1 = 0 or �1 = �1+� < �1. As �1 2 [�1; n1�1], a consistent
SE must satisfy:

�1 = 0

�2 = � = �.

From Def. 4 and 5, consistent conjectural equilibria are �xed points of:

dX�i
1

dxi1
= �1

dX2

dxi1
= �2.

Since d2P (X)
dX2 � 0, the condition dX�i

1

dxi1
= �1 = 0 requires � = �1. This

corresponds to a speci�c case of perfect competition in which type 1 �rms do
not react to any move of another type 1 �rm, while type 2 �rms determine their
strategy without modifying the equilibrium price. QED.
Proposition 2 puts into light the consistency of the CE and its correspon-

dence with the SE: consistency of the SE requires that the �rms to correctly
perceive the true slope of the aggregate reaction function emanating from the
�rms which do not form conjectures. For � 6= �1, none of the intercohort-
consistent CE that coincide with the SE can be intracohort-consistent.

5 An example

It is assumed that p(X) is continuous, linear and decreasing with X and that it
may be written:

p(X) = max f0; a� bXg , a; b > 0. (8)

The cost functions of any �rm i and j are assumed to be linear, i.e. c1xi1,
8i = 1; :::; n1 and c2xj2, 8j = 1; :::; n2. We assume c1 = c2 = c, 8i, 8j. The pro�ts
of any �rms i and any �rm j may be written �i1 =

�
a� c� b(xi1 +X�i

1 +X2)
�
xi1

for i = 1; :::; n1 and �
j
2 = (a � c � b(X1 + xj2 +X�j

2 ))xj2 for j = 1; :::; n2. This
economy has a unique symmetric competitive equilibrium given by �xi1 = �xj2 =
a�c
bn , i = 1; :::; n1 and j = 1; :::; n2, with ��

i
1 = 0 for i = 1; :::; n1 and ��

j
2 = 0 for

j = 1; :::; n2.
Assume symmetry among all �rms of each type, i.e. xi1 = x1 for any i =

1; :::; n1 and x
j
2 = x2 for any j = 1; :::; n2. The best response function of all type

1 �rms but i may be deduced from (4) and the best response of any type 2 �rm
is given by (5):5

5One cannot use the �rst-order condition to �rm i�s pro�t maximization problem to de�ne
how all �rms but i respond to a one-unit increase in i�s output, because doing so would ignore
the indirect e¤ects of a one-unit increase in i�s output.On this point, see notably Kamien and
Schwartz (1983) and Perry (1982)).
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(a� bX)� b(1 + �1 + �)
�

X�i
1

n1 � 1

�
� c = 0, (9)

x2 =
a� c

b(n2 + 1)
� X1

n2 + 1
. (10)

From (10), one deduces the slope of the reaction function of type 2 �rms:6

dX2

dxi1
= �

�
1 +

dX�i
1

dxi1

�
, with � = � n2

n2 + 1
. (11)

In addition, di¤erentiating (9) leads to:

dX�i
1

dxi1
= �

(n1 � 1)
�
1 + dX2

dxi1

�
n1 + �1 + �

. (12)

The intracohort-consistency condition dX�i
1

dxi1
= �1 yields:

1 + �2 +
n1 + �1 + �

n1 � 1
�1 = 0. (13)

From the second consistency condition �2 = �(1 + �1), one deduces after
rearrangement:

�21 + (1 + �)n1�1 + (1 + �)(n1 � 1) = 0. (14)

From equation (14), the locally consistent conjectural equilibrium is unique
and de�ned by:7

� = � n2
n2 + 1

, (15)

�1 = � (1 + �)n1
2

+

q
[(1 + �)n1]

2 � 4(n1 � 1)(1 + �)
2

,

�2 = �(1 + �1).

It has been shown in proposition 2 that within the set of CE equilibria
that coincide with the SE, a consistent equilibrium must satisfy �1 = 0. In the
above equations, there are only two cases for which �1 = 0: either n1 = 1
(the leader is alone and behaves as a monopolist) or � = �1 (perfectly compet-
itive behaviors are expected for type 2 agents, which corresponds to n2 !

6When n2 = 1, one has �2 = � 1
2
, which is the true slope of the reaction function in case

of a linear Stackelberg duopoly.
7As �1 + �2 � �1 one gets �1 � �(1 + �). Thus for n1 � 2, one has � (1+�)n1

2
�p

[(1+�)n1]
2�4(n1�1)(1+�)
2

<
(1+�)n1

2
� �(1 + �). One deduces that the only possible value

is �1 = � (1+�)n1
2

+

p
[(1+�)n1]

2�4(n1�1)(1+�)
2

.
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1). The SE is only partially consistent, according to de�nitions 4 and 5.
The SE is a locally intercohort-consistent CE if �2 = � n2

n2+1
for any feasi-

ble values of �1 and �, while it is a locally intracohort-consistent CE when

�1 = � (1+�)n1
2 +

p
[(1+�)n1]

2�4(n1�1)(1+�)
2 , for any feasible values of �2 and �.

It is worth noting that proposition 1 is also satis�ed for �1 = 0 and �2 = � n2
n2+1

.

Finally, from (9)-(10), the equilibrium strategies are:

~x1(�1; �2) =
a� c

b[n1 + (n2 + 1)(1 + �1 + �)]
, (16)

~x2(�1; �2) =
(a� c)(1 + �1 + �)

b[n1 + (n2 + 1)(1 + �1 + �)]
. (17)

When �1 = 0 and � = � n2
n2+1

, these equilibrium strategies become:

~x1 =
a� c

b(n1 + 1)
, (18)

~x2 =
(a� c)

b(n1 + 1)(n2 + 1)
. (19)

These equilibrium strategies coincide with the strategies obtained in the
multiple leader-follower Stackelberg equilibrium developed by Daughety (1990).
In addition, when �1 = �1 and �2 = � = 0, (11)-(12) yields:

dX�i
1

dxi1
= �1, (20)

dX2

dxi1
= 0.

So, the asymmetric competitive equilibrium is locally consistent. Note that
it does not imply that � is correctly expected (since � = �n2

1+n2
). It corresponds

to competitive equilibrium strategies, where type 1 �rms share the market.
This result con�rms that perfect competitive equilibrium is consistent when
agents form competitive conjectural variations under constant marginal costs
(Bresnahan (1981), Perry (1982)).

6 Conclusion

We determine the conditions under which the Stackelberg equilibrium coincides
with the equilibrium of a simultaneous move game in which �rms form asym-
metric conjectures. We also precise the de�nitions of consistent conjectural
variations in an asymmetric framework.
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