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Abstract 

Many important determinants of traffic fatalities have been identified using the widely popular fixed-effects (FE) 
estimator for panel data. However, the FE estimator precludes an analysis of time-invariant or rarely changing 
variables, thereby obscuring their relative impact on traffic fatalities. This study estimates the effect of time-invariant 
and rarely changing variables (climate, geography, laws, etc.) on the U.S. state traffic fatality rate using alternative 
econometric methods in addition to the FE estimator. We find that alcohol consumption, air temperature, and 
precipitation have the largest effect on traffic fatalities. Our findings suggest that policy makers and the insurance 
industry practitioners may want to re-evaluate the role of climate in road safety.
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1. Introduction 
 

According to the Center for Disease Control and Prevention (2007), traffic fatalities are the 

leading cause of death in the United States among people between the ages of 1 and 34 years old. 

In the United States, traffic fatalities have increased on average by 4.7% from 1994 to 2006. 

During this period, states like North Dakota and Wyoming have experienced double digit 

increases in their traffic fatality rates, while states like Utah and Minnesota have seen a decrease 

in their traffic fatality rate by over 30%.    

 

Numerous policies have been adopted with the specific intention of reducing the traffic fatality 

rate. These policies include drinking and driving regulations, seat belt laws, and speed limits, 

among others. The increased availability of longitudinal panel data for the U.S. states together 

with the fixed-effects (FE) estimator have improved the analysis of the effectiveness of these 

policies in reducing traffic fatalities. However, the FE estimator absorbs the time-invariant or 

rarely changing variables, preventing us from estimating the relative contribution of these factors 

to traffic fatalities. In the context of road safety, the relevant time-invariant or rarely changing 

variables may include geography, climate, traffic laws and regulations, alcohol policies, culture, 

and habits. The effect of these factors on traffic fatalities may not be trivial, but they are often 

excluded from the FE estimator. This obscurity warrants an analysis of these factors. 

 

This study estimates the impact of several time-invariant and rarely changing variables on the 

traffic fatality rate using a balanced longitudinal panel of 48 contiguous U.S. states from 1982 to 

2006. We discern the impact of several rarely changing variables on traffic fatalities from state 

fixed effects using random effects (RE) and fixed-effects vector decomposition (FEVD) 

econometric techniques. The strongest determinants of traffic fatalities in our model, as 

measured by estimated elasticity coefficients, are alcohol consumption, air temperature, and 

precipitation. Population density and crime rate also have a rather strong effect on the traffic 

fatality rate. Overall, our estimates suggest that climate is one of the strongest determinants of 

traffic fatalities in the United States. Even though climate is outside of policy makers’ control, 

our estimates suggest that climate considerations may need to play a more important role in the 

design of transportation infrastructure and auto insurance policies.  

 

2. The Empirical Model and Data 

 

According to the model specification search by Park et al. (2008), the log-linear model of traffic 

fatalities is statistically reliable. Furthermore, the log-linear model used in this study passes the 

Ramsey (1969) model specification test, indicating that the model does not suffer from 

significant omitted variable bias. The log-linear model specification also allows for nonlinear 

relationships to be estimated via OLS. Moreover, the regression coefficients in the log-linear 

model can be interpreted as constant elasticity estimates, simplifying the comparison of 

coefficients. For these reasons, we propose estimating the following log-linear model of the 

traffic fatality rate, where all strictly positive (non-zero) variables are transformed via natural 

logarithms:  

 

it it i i it
y X Z uα β γ ε= + + + + .                                                                                                  (1) 
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Where yit is the traffic fatality rate, Xit is a vector of time-variant regressors, Zi is a vector of 

time-invariant or rarely changing regressors, ui  is the unobserved time-invariant (i.e. fixed) state 

effect, εit is the disturbance, and the subscripts i=1,…,48 and t = 1982,…, 2006 represent states 

and years, respectively. The parameters β, γ, ui , and εit are unobserved (i.e. to be estimated). The 

chosen regressors in our model are dictated by previous studies and economic intuition.1 The 

choice of the time span and 48 contiguous states is dictated by data availability. Variable 

definitions, sources, and summary statistics are available in Table 1. The variance inflation 

analysis of the model in equation 1 and the pair-wise correlations in Table 2 reveal that the 

chosen regressors are not multicollinear (results available upon request).  

 

The time-variant regressors are alcohol consumption, per capita income, gasoline price, 

population density, percentage of young and old population, and the crime rate. The time-

invariant and rarely changing regressors are mountainous and coastal state dummies, speed 

limits, precipitation, air temperature, primary seatbelt law dummy, compulsory insurance law 

dummy, and no-fault liability law dummy. Some of these variables are completely time-invariant 

(coastal and mountainous terrain), while others exhibit questionable degree of variation over 

time. For example, few states revised their speed limit levels more than once between 1982 and 

2006. States that adopted primary seat belt, compulsory insurance and no-fault liability laws had 

not changed them, while states that did not adopt these laws retained zero for the entire time span 

of the dataset, making these variables rarely changing. Although temperature and precipitation 

do vary from year to year, these variations are rather small, compared to cross-sectional 

variations, and are highly collinear with the state fixed effects. Because some ambiguity exists as 

to the degree of time-invariance and, therefore, multicollinearity of these variables with the state 

fixed effects, it is prudent to examine the effect of these variables on traffic fatalities using 

different estimators.  

 

The unit or within FE estimator is a popular panel data regression technique because it is 

designed to control for unobserved heterogeneity (i.e. the correlation of regressors with relevant 

omitted variables). According to the Hausman test (results available upon request), the FE 

estimator is more consistent than the RE estimator for our dataset. However, the FE estimator 

absorbs the time-invariant variables, precluding us from learning about their effects on traffic 

fatalities. Even rarely-changing variables in the FE estimator may have imprecise coefficient 

estimates with large standard errors because of high correlation with the unit fixed effects 

(Breusch et al., 2010). Previous attempts to analyze the time-invariant variables in longitudinal 

panel data have relied on the RE, pooled OLS, and Hausman-Taylor estimators, which have their 

own disadvantages compared to the ubiquitous FE estimator. Recently, Plümper and Troger 

(2007) developed the fixed-effects vector decomposition (FEVD) estimator, which they claim is 

more efficient and reliable than the pooled OLS, RE, and Hausman-Taylor estimators when both 

time-invariant and time-varying variables are correlated with the fixed effects. Nevertheless, 

Plümper and Troger (2007) acknowledge that the inclusion of time-invariant variables in the RE 

estimator may serve as the second best alternative to the FEVD procedure. For the 

aforementioned reasons, we estimate the effect of time-invariant and rarely changing variables 

using three different regressions techniques: FE, RE, and FEVD. 

 

                                                 
1
 The following studies, among other, were reviewed: Beck et al. (2007), Nelson et al. (1998), Peltzman (1975), 

Glassbrenner (2005), Garbacz (1990a, 1990b, 1991, 1992), Risa (1994), Calkins and Zlatoper (2001), Sen (2001), 

Cummins et al. (2001), Cohen and Dehejia (2004). 
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A brief description of the newly developed FEVD estimator is warranted here. In essence, FEVD 

is a three stage procedure. The first stage implements the conventional fixed-effects model to 

obtain an estimate of the unit fixed effects. The second stage decomposes the fixed-effects vector 

into a part explained by the time-invariant variables and an unexplainable part (the residual). The 

third stage re-estimates the original model by pooled OLS, including the time-invariant variables 

and the residual from the second stage. 

 

In this paper, however, we utilize only the second stage of the FEVD estimator given the 

criticisms made by Greene (2010) and Breusch et al. (2010) regarding the variance-covariance 

matrix implemented in the third-stage by Plümper and Troger (2007). The second stage of the 

FEVD estimator is sufficient to analyze the effects of time-invariant and rarely changing 

variables on traffic fatalities since the coefficients for time-invariant variables are identical in the 

second and third stages, making the third stage of FEVD redundant. The first stage of the FEVD 

procedure estimates the standard within fixed effects model including only the time-variant, 

right-hand-side variables: 

 

it it i ity X u eα β= + + + .                                                                                                       (2) 

 

Where yit is the time-variant dependent variable, Xit is a vector of time-variant variables, ui is the 

unit (state) fixed effect, and eit is the normally distributed error component. This unit (within) 

fixed-effects estimator effectively de-means the data, removing the unit effects ui and giving us 

the group-average of the unexplained component in the dependent variable ˆˆ
i i i FEu y X β= − , 

which is also the fixed-effects vector. Now, we can analyze the effects of time-invariant and 

rarely changing variables in Zi on the unexplained portion of traffic fatalities ˆ
iu by estimating 

equation (3) via pooled OLS: 

 

ˆ
i i iu Zω γ η= + + .                                                                                                                           (3) 

 

Where ω is the intercept and ηi is the error term. The OLS estimates of γ from equation (3) are 

included in the third column in Table 3, allowing us to infer about the impact of time-invariant 

and rarely changing variables on the portion of the traffic fatality rate that is not explained by the 

time-variant variables. 

 

3. The Estimates 

 

The results from three different estimators are shown in Table 3. The first (FE) regression shows 

the impact of time-variant variables on the traffic fatality rate, excluding completely time-

invariant variables such as mountainous and coastal state dummies because of their perfect 

multicollinearity with the state fixed effects. Most of the variables in the FE regression are 

statistically significant (at the 5% level) with the exception of young and old population shares, 

air temperature, compulsory insurance and no-fault liability laws. However, the FE estimates for 

the rarely-changing variables such as precipitation, compulsory insurance and no-fault liability 

laws have counterintuitive negative signs. Cummins et al. (2001) and Cohen and Dehejia (2004) 

find compulsory insurance and no-fault liability laws to be associated with moral hazard and 

higher traffic fatalities. Perhaps, the insignificant and negative coefficients for the two insurance 

variables reflect their low time-variance and possible endogeneity bias. 
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The second (RE) regression estimates in Table 3 should be less consistent than the FE estimates 

as suggested by our Hausman test. Nevertheless, the RE regression allows for the inclusion of 

completely time-invariant variables such as mountainous and coastal state dummies, and is 

therefore useful. In contrast to the FE estimates, the RE regression indicates that the share of old 

in state populations, temperature, coastal and mountainous state dummies, as well as compulsory 

insurance and no-fault liability laws have significant effects on traffic fatalities. Also, 

precipitation switches from having a negative and significant coefficient in the FE regression to 

having a positive and significant coefficient in the RE regression, which is more logical. 

 

The third regression in Table 3 that is based on the second stage of the FEVD procedure yields 

very qualitatively different estimates for many time-invariant and rarely changing variables 

compared to the FE and RE regressions. For instance, the third regression yields much larger, 

positive, and statistically significant coefficients for temperature and precipitation, while 

producing a stronger negative coefficient for the coastal state dummy. Moreover, the third 

regression shows that speed limits, mountainous state dummy, primary seat belt, compulsory 

insurance and no fault liability laws are not statistically significant. 

 

Can anything be learned from the three regressions in Table 3? The short answer is yes. We 

recommend using the FE estimates for inference about the impact of the following time-variant 

variables on traffic fatalities: young and old population shares, population density, crime rate, 

income, alcohol consumption, and gasoline price. These variables have the expected effects on 

the traffic fatality rate and most of them are statistically significant. The top three strongest time-

variant determinants of traffic fatalities in the FE regression are alcohol consumption, population 

density, and crime rate with corresponding elasticity coefficients of 0.9, -0.41, and 0.25, 

respectively.  

 

As for the time-invariant and rarely changing variables, it is difficult to make unequivocal 

inference recommendations given the ambiguous degree of time-invariance for some of these 

variables and drastically different estimates across the three regressions. However, armed with 

the knowledge of previous research, economic intuition, and RE as the benchmark estimator, we 

can make the following cautious inference suggestions.  

 

The statistically significant, positive, and rather large coefficient estimate of 0.55 for the natural 

log of precipitation in the third (FEVD) regression makes sense. One would expect higher 

precipitation (rain, snow, sleet, etc.) to increase traffic fatalities, but the FE and RE regressions 

tell us the opposite story. Similarly, the third regression’s estimate for air temperature is positive, 

statistically significant, and has the highest elasticity coefficient (1.35) of all other variables. This 

positive relationship between traffic fatalities and temperature also makes sense given that higher 

temperature may increase fatigue and sleepiness in drivers, thereby leading to more accidents 

and traffic fatalities. Furthermore, higher air temperature may proxy for better roads and higher 

traffic speeds, which would increase traffic fatalities according to the Peltzman (1975) risk 

compensation theory. The risk compensation theory postulates that people have an optimal level 

of risk they are willing to tolerate and will counteract the gains in safety by driving more 

aggressively. For example, an increase in seat belt usage may lead to more careless driving, 

which may increase traffic accidents and fatalities. Several studies corroborate this argument 

(Garbacz, 1990a, 1990b, 1991, 1992; Risa, 1994; Calkins and Zlatoper, 2001; and Sen, 2001).  
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Unlike the mountainous state dummy, the coastal state dummy has a consistently negative and 

significant coefficient across the second and third regressions. Geographic factors, like coastal 

state dummy, may proxy for cultural habits that pertain to seat belt usage, risk preference, and 

other driving habits. Several studies find that younger, less educated, and poorer males are less 

likely to wear a seat belt (Beck et al., 2007; Nelson et al., 1998; Glassbrenner, 2005). If coastal 

states tend to have better educated and older populations, then the negative association between 

traffic fatalities and coastal state dummy makes sense.  

 

The decreasing magnitude and significance of the positive coefficient for speed limits from the 

first to the third regression is somewhat puzzling. Both FE and RE regressions suggest that lower 

speed limits reduce traffic fatalities. This relationship has been supported by Friedman et al. 

(2009) and challenged by Lave (1985) and Graves et al. (1993), for example. Estimation of the 

relationship between traffic fatalities and speed limits is complicated by the fact that enforcement 

of speed limits may vary substantially across states and the potential for speed limit levels to be 

endogenous (i.e. depend on the de-facto traveling speeds and enforcement). Furthermore, the FE 

estimate for speed limits may not be accurate given that this is a rarely changing variable. The 

third regression also yields positive coefficients for compulsory insurance and no-fault liability 

laws, similar to Cummins et al. (2001) and Cohen and Dehejia (2004). However, these 

coefficient estimates are not statistically significant. 

 

Due to the potentially endogenous and rarely changing nature of speed limits, seat belt usage, 

compulsory and no-fault liability laws, we cannot make unequivocal recommendations as to 

which of our three estimators are better suited for statistical inference about these variables. 

However, the remaining time-variant and not so time-variant variables seem to have plausible 

estimates. 

 

4. Conclusion 

 

Using three different estimators (FE, RE, and FEVD), this study performs a comparative analysis 

of how time-invariant and rarely changing variables may affect the U.S. state traffic fatality rate. 

The commonly utilized unit or within fixed-effects estimator (FE) is not compatible with time-

invariant or rarely changing variables due to multicollinearity between the rarely changing 

variables and the unit fixed effects. Thus, the FE estimator precludes us from estimating the 

relative impact of the time-invariant and, perhaps even, rarely changing variables on the traffic 

fatality rate. Using the random effects (RE) and fixed-effects vector decomposition (FEVD) 

estimators, this paper examines the effect of several time-invariant and rarely changing variables 

on the traffic fatality rate. These variables are precipitation, air temperature, mountainous and 

coastal terrain, seat belt laws, speed limits, compulsory insurance and no-fault liability laws. 

Using a longitudinal panel of 48 contiguous U.S. states from 1982 to 2006, we find that alcohol 

consumption, air temperature, and precipitation have the strongest effects on traffic fatalities. 

Our findings suggest that the policy makers and insurance industry practitioners may want to re-

evaluate the contribution of geography and climate to traffic fatalities. 
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Appendix 

Table 1: Variables and Sources 

Variable Name Variable Description 
Mean 

(Std. Dev.) 

Traffic fatality rate Traffic fatalities divided by state population (population/1000), 
0.18 

(0.06) 

Young population The percentage of people 18-24 years of age in state population. 
0.08 

(0.07) 

Old population  The percentage of 65 and older people in a state population. 
0.12 

(0.02) 

Real gas price  Per gallon gasoline price in constant dollars.  
1.90 

(0.41) 

Real per capita 

income 
Real GDP/total population (in thousands). 

39.74 

(10.38) 

Population density  Total population/square miles of land. 
0.17 

(0.24) 

Primary seat belt 

law  
Dummy variable: 1 if state has a primary seatbelt law, 0 if otherwise  

0.22 

(0.42) 

No-fault liability 

law  
Dummy variable: 1 if state has a no-fault liability law, 0 if otherwise. 

0.28 

(0.45) 

Compulsory 

insurance law 
Dummy variable: 1 if state has a compulsory liability law, 0 if otherwise. 

0.79 

(0.41) 

Alcohol 

consumption 
Alcohol consumption in gallons per capita of total population over the age of 17. 

2.39 

(0.56) 

Precipitation Average weighted annual precipitation (rain, snow, sleet, or hail). 
3.09 

(1.26) 

Temperature Average weighted annual temperature (adjusted for time of observation bias). 
52.50 

(7.61) 

Speed limit Average (rural and urban) speed limit in miles per hour. 
60.03 

(6.15) 

Crime rate Combined violent and property crime rate. 
0.05 

(0.01) 

Coastal state Dummy variable: 1 if state with a sea coast, 0 if otherwise. 
0.46 

(0.50) 

Mountainous state 
Dummy variable: 1 if state is a member of the Rocky mountain Census region, 0 

if otherwise. 

0.16 

(0.37) 

Data sources for the above variables in descending order: 

1. The Fatal Accident Reporting System (FARS),  

www.fars.nhtsa.dot.gov/States/StatesCrashesAndAllVictims.aspx, and US Census Bureau Statistical Abstract, 

http://www.census.gov/compendia/statab/past_years.html 

2. Ponicki, W. R. (2004) Statewide Availability Data System II: 1933 -2003 and the US Census Bureau Statistical 

Abstract, http://www.census.gov/compendia/statab/past_years.html 

3. Ponicki, W. R. (2004) Statewide Availability Data System II: 1933 -2003 and the US Census Bureau Statistical 

Abstract, http://www.census.gov/compendia/statab/past_years.html 

4. Energy Information Association, www.tonto.eia.doe.gov/dnav/pet/pet_pri_gnd_a_epmr_pte_cpgal_w.htm 

5. Bureau of Economic Analysis, http://www.bea.gov/ 

6. US Census Bureau Statistical Abstract, http://www.census.gov/compendia/statab/past_years.html 

7. National Highway Traffic and Safety Administration, http://www.nhtsa.gov/people/outreach/state_laws-

belts04/safeylaws-states.htm and the Fatal Accident Reporting System (FARS), http://www-

fars.nhtsa.dot.gov/States/StatesLaws.aspx 

8. Cohen, A. and Dehejia, R. 2004. “The Effect of Automobile Insurance and Accident Liability Laws on Traffic 

Fatalities.” Appendix Table 2: Automobile Liability Insurance Laws. 
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9. Cohen, A. and Dehejia, R. 2004. “The Effect of Automobile Insurance and Accident Liability Laws on Traffic 

Fatalities.” Appendix Table 2: Automobile Liability Insurance Laws. 

10. Brewers Almanac. Brewers Almanac 2008. Beer Institute. Electronic Data. September 2008. 

www.beerinstitute.org 

11. National Climatic Data Center, “Average Annual Precipitation”, 

http://www1.ncdc.noaa.gov/pub/data/cirs/drd964x.pcpst.txt 

12. National Climatic Data Center, “Average Annual Temperature”, 

http://www1.ncdc.noaa.gov/pub/data/cirs/drd964x.tmpst.txt  

13. Insurance Institute for Highway Safety, “Maximum Posted Speed Limits”, 

http://www.iihs.org/laws/SpeedLimits.aspx 

14. Bureau of Justice Statistics, http://bjs.ojp.usdoj.gov/ 

15. U.S. Census Bureau. 
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Table 3: Determinants of the U.S. State Traffic Fatality Rate 

Dependent variable: 
Traffic Fatality 

Rate 

Traffic Fatality 

Rate 

Fixed effects vector 

( ˆˆ
i i i FEu y X β= − ) 

Estimator: FE via OLS RE via GLS Pooled OLS 

Young population 
0.01 

(0.01) 

-0.01 

(0.01) 
- 

Old population 
-0.11 

(0.08) 

-0.17*** 

(0.05) 
- 

Population density 
-0.41*** 

(0.13) 

-0.22*** 

(0.02) 
- 

Crime rate 
0.25*** 

(0.05) 

0.23*** 

(0.02) 
- 

Real per capita income 
0.07*** 

(0.02) 

0.06*** 

(0.02) 
- 

Real gasoline price 
-0.09** 

(0.04) 

-0.04* 

(0.02) 
- 

Alcohol consumption 
0.90*** 

(0.11) 

0.80*** 

(0.05) 
- 

Temperature
†
 

-0.02 

(0.11) 

0.60*** 

(0.10) 

1.34*** 

(0.22) 

Precipitation
†
 

-0.09*** 

(0.02) 

0.04** 

(0.02) 

0.55*** 

(0.09) 

Speed limit
†
 

0.23*** 

(0.08) 

0.08* 

(0.04) 

0.17 

(0.13) 

Primary seat belt law (dummy)
 †
 

-0.05*** 

(0.02) 

-0.06*** 

(0.01) 

0.02 

(0.04) 

No-fault liability law (dummy) † 
-0.05 

(0.05) 

-0.06** 

(0.03) 

-0.002 

(0.07) 

Compulsory insurance (dummy)
 †

 
-0.02 

(0.02) 

-0.03** 

(0.01) 

0.07 

(0.07) 

Mountainous state (dummy)
 †
 - 

-0.36*** 

(0.07) 

0.10 

(0.10) 

Coastal state (dummy)
 †

 - 
-0.14*** 

(0.05) 

-0.31*** 

(0.08) 

R-squared 0.64 0.62 0.63 
All variables are in natural logarithms except for the dummy variables. 

†
Time-invariant or rarely changing variables. 

Robust clustered standard errors are reported in parentheses. Significance levels: *** at 1%, ** at 5%, and * at 10%. 

Observations: 1200 (48 contiguous U.S. states, 1982-2006). The constant and state fixed effects are not reported to 

conserve space. 


