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Abstract 

This paper used regional panel data for Chinese provinces from 1979 to 2003, and for Japanese prefectures from 1955 
to 1998, to estimate the spatial externalities (or spatial multiplier effects) using a production function and Bayesian 
methodology, and to investigate the long-run behavior of the spatial externalities of each country. According to the 
estimation results, China's spatial externalities increased its domestic production significantly after 1994, which tended 
to increase until 2003. Before 1993, however, its spatial externalities were not significant. Japan's spatial externalities 
showed fluctuating values throughout the sample period. Furthermore, the movement of the spatial externalities was 
correlated with Japan's business conditions: the externalities showed a high value in the economic boom, and a low 
value in the economic depression. This could mean that spatial externalities correlate mainly with business conditions.
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1. Introduction

Over the past few years, concern about spatial externalities in the field of regional economics
has risen (Anselin 2003). Spatial externalities are the external effects that spread over several
regions, implying that knowledge or ideas that improve the technology of production spill over
from one region to the other; thus technical progress in one region brings about an improvement
in productivity, not only in its own region, but also in other nearby regions. It seems natural
to assume that a regional economy is influenced to some extent by its spatial externalities. To
what extent do spatial externalities have an effect on a regional economy? Are their effects only
trivial or are they essential for regional economic growth? Therefore, to understand economic
growth it is important to measure quantitatively the effect of spatial externalities.

Some studies have attempted an empirical analysis of regional economic growth that takes
account of spatial externalities. Ertur and Koch (2007) developed a spatially augmented Solow
model, by introducing spatial externalities into the traditional Solow model, and estimated the
impact of saving, population growth, and neighborhood on both real income and its growth
rate. They used the data from Penn World Tables version 6.1 (91 countries, 1960–1995; Heston
et al. 2002) and spatial econometric tools (Anselin 1988; 2001), and concluded that spatial
externalities were significant. In other studies, Váya et al. (2004)，Fingleton and Ĺopez-Bazo
(2006)，Olejnik (2008)，and Pfaffermayr (2009) each undertook an econometric analysis of
economic growth in Europe, using a version of the spatially augmented Solow model. Each of
these studies emphasized the importance of spatial externalities for economic growth.

The problem with the previous studies lies in the fact that few of these studies have attempted
to clarify the long-run behavior of spatial externalities. Kakamu et al. (2007) estimated Japan’s
production function including spatial externalities, and examined year-to-year change in spatial
externalities. They used Japanese prefectural panel data for the manufacturing industry from
1991 to 2000, and concluded that spatial externalities tended to decline and became insignificant
after 1993. However, it is hard to consider their examination as a long-run investigation of
spatial externalities as their study period was only 10 years.

There are no definitive answers to how the extent of spatial externalities behaves in the long
run as yet. In this paper, panel data for Chinese provinces from 1979 to 2003, and for Japanese
prefectures from 1955 to 1998, were used to estimate the production function with the spatial
externalities of China and Japan, respectively, and to investigate the long-run behavior of the
spatial externalities of each country. Section 2 of this paper explains the production function
including the spatial externalities. Section 3 discusses the Bayesian estimation method, and
Section 4 reports the empirical results.

2. Model

Let us consider a regional economy that produces output using capital and labor input, assuming
that its production technology is given by the following Cobb-Douglas form:

Yit = Ait Kαt
it L1−αt

it exp{εit} (1)

where i and t denote a region and time,Yit is output,Kit is capital input,Lit is labor input,
Ait is the level of technology,αt is a parameter, andεit is an error term. To introduce spatial
externalities into the production function, we assume the existence of externalities related to the
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technology levelAit , specifying it as follows:

Ait = γt δ
di
t

N∏

j=1

(
Yjt

L jt

)ρt wi j

(wi j = 0, if i = j) . (2)

The term
(

Yjt

L jt

)ρt wi j
means that increasing the labor productivity ofj’s region (j , i) by 1% brings

about an improvement ofAit by ρtwi j %, and this term thus indicates the spatial externalities
or spatial spillover effects between regioni and its neighbors. The magnitude of the spatial
externalities is represented byρt. Thewi j indicates the neighbors of regioni, specifyingwi j =

ci j/
∑N

j ci j , whereci j = 1 if i and j are neighbors, andci j = 0 otherwise. Thewi j refers to the
standardized spatial weight (0≤ wi j ≤ 1).

The remainingγt andδt are parameters, anddi is China’s coastal-inland dummy variable,
such thatdi = 1 if i ∈ coastal region,di = 0 otherwise.1) Consequently, the coastal and inland
technology levels are distinguished such that

Ait =


γt δt

∏N
j=1

(
Yjt

L jt

)ρt wi j
i ∈ coastal region

γt
∏N

j=1

(
Yjt

L jt

)ρt wi j
i ∈ inland region

In the case of Japan, we suppose thatdi = 0 for all i.
Substituting Equation (2) for (1), dividing byLit , and taking logarithms yields the following

estimable equation:

yit = ρt

∑N

j=1
wi j y jt + xit βt + εit (3)

whereyit = log(Yit/Lit), xit =
[
1, di , log(Kit/Lit)

]
, andβt =

[
logγt, logδt, αt

]′. Equation (3),
which is called a spatial lag model in the literature (Anselin 1988; 2001), is estimated using the
data of China and Japan, respectively.

In the vector and matrix notation, Equation (3) can be written as

yt = ρtWy t + Xt βt + εt (4)

y = (Dρ ⊗W) y + X β + ε (5)

whereyt =
[
y1t, y2t, . . . , yNt

]′, Xt = [x1t, x2t, . . . , xNt]
′, y =

[
y1, y2, . . . , yT

]′, and

X =



X1

X2
. . .

XT


, Dρ =



ρ1

ρ2
. . .

ρT


, W =



w11 w12 . . . w1N

w21 w22 . . . w2N
...

...
. . .

...
wN1 wN2 . . . wNN



in whichW is referred to as the (row-standardized) spatial weight matrix. The reduced form of
Equation (4) is given by

yt = (I N − ρtW)−1Xt βt + (I N − ρtW)−1εt (6)

1)The coastal regions are defined as the following 12 regions: Beijing, Tianjin, Hebei, Liaoning, Shanghai,
Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Guangxi, and Hainan. The inland regions are defined as the
following 18 regions: Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Sichuan,
Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
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where (I N − ρtW)−1, like a Leontief inverse, can be expanded into an infinite series (I N + ρtW +

ρ2
t W

2 + · · · ), which is known in the literature as the spatial multiplier (Anselin 2003). Equation
(6) implies that labor productivity in regioni is affected, not only by the technology level and
the capital-labor ratio ini, but also by those in all the other regions through the inverse term.

To measure the contribution of the spatial externalities (or the spatial multiplier effects) on
the total production in a country, we defineYt =

∑N
i Yit as the observed total output of a country,

andỸt as the total output without the spatial externalities:

Ỹt =
∑N

i
Ỹit

=
∑N

i
γt δ

di
t Kαt

it L1−αt
it exp{εit}

=
∑N

i
exp

{
logLit + yit − ρt

∑N

j=1
wi j yjt

}

and also define the difference betweenYt andỸt as follows:

GAPt =
Yt − Ỹt

Yt
=

Yt/Lt − Ỹt/Lt

Yt/Lt
(7)

whereLt =
∑N

i Lit is the total labor input. TheGAPt indicates the magnitude of the spatial
externalities in total domestic production. In this way, by estimating Equations (3) and (7), and
describing the behavior ofρt andGAPt, it is possible to investigate the long-run behavior of
spatial externalities.

3. Bayesian Estimation

This section describes the Bayesian method of estimating Equations (3) and (7). Bayesian
methodology requires theposterior densityto make an inference regarding the unknown pa-
rameters in a model. The posterior is proportional to thelikelihood functiontimes theprior
density, such asπ(θ | y) ∝ f (y | θ) × π(θ) , wherey is the data observed,θ is the unknown
parameters,π(θ | y) is the posterior, andf (y | θ) is the likelihood. The following subsections
explain the likelihood and the prior for our model, and show the computational scheme for
estimating the posterior.

3.1 Likelihood Function

Let us assume thatε in Equation (5) has a multivariate Normal distribution, with E(ε) = 0 and
E(εε′) = ΩNT. Then, the likelihood for our model can be expressed by

f (y | β,ΩNT,Dρ) = (2π)−
NT
2 |ΩNT |− 1

2

∏T

t=1
| I N − ρtW |

× exp

{
−1

2

[
y −

(
Dρ ⊗W

)
y − X β

]′
Ω−1

NT

[
y −

(
Dρ ⊗W

)
y − X β

]}
.

(8)

Since it is not feasible to estimate the (NT × NT) matrix ΩNT with no restrictions, we specify
the covariance matrix as follows. Suppose thatεt follows AR(1) process

εt = ψεt−1 + ηt, ηt ∼ N(0,ΣN)
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where|ψ | < 1, N( ) denotes a Normal distribution, andΣN is a (N × N) diagonal matrix with
heteroskedasticity (σ2

1, σ
2
2, . . . , σ

2
N). As a result, the covariance matrix can be specified by

E(εε′) = (1− ψ2)−1ΨT ⊗ ΣN

= ΩT ⊗ ΣN
(9)

ΨT =



1 ψ ψ2 . . . ψT−1

ψ 1 ψ . . . ψT−2

ψ2 ψ 1 . . . ψT−3

...
...

...
. . .

...
ψT−1 ψT−2 ψT−3 . . . 1



whereΩT = (1 − ψ2)−1ΨT . Substituting Equation (9) into Equation (8) yields the following
likelihood function:

f (y | β,ΣN,Dρ, ψ) = (2π)−
NT
2 |ΩT |− N

2 |ΣN |− T
2

∏T

t=1
| I N − ρtW |

× exp

{
−1

2

[
y −

(
Dρ ⊗W

)
y − X β

]′ [
Ω−1

T ⊗ Σ−1
N

] [
y −

(
Dρ ⊗W

)
y − X β

]}
.

(10)

As an alternative representation, and applying Prais-Winsten transformation toΩ−1
T , Equation

(10) can be rewritten as

f (y | β,ΣN,Dρ, ψ) = (2π)−
NT
2 (1− ψ2)

N
2 |ΣN |− T

2

∏T

t=1
| I N − ρtW |

× exp

{
−1

2

[
ε′1(1− ψ2)Σ−1

N ε1 +
∑T

t=2
(εt − ψεt−1)

′Σ−1
N (εt − ψεt−1)

]} (11)

whereεt = yt − ρtWy t − Xt βt for t = 1,2, . . . ,T.

3.2 Prior Density Function

Let us assume that the prior used in this paper takes the following form

π(β,ΣN,Dρ, ψ) = π(β)
{∏N

i=1
π(σ2

i )
} {∏T

t=1
π(ρt)

}
π(ψ) (12)

where

π(β) : β1 ∼ N(b0,Σ0), βt+1 = βt + ut, ut ∼ N(0,Σβ)
π(σ2

i ) : σ2
i ∼ IG(ν0i/2, ω0i/2) (i = 1,2, . . . ,N)

π(ρt) : ρt ∼ U(λ−1
min, λ

−1
max) (t = 1,2, . . . ,T)

π(ψ) : ψ ∼ T N(|ψ |<1)(q0, σ
2
ψ0).

IG( ) and U( ) denote a distribution of inverse Gamma and Uniform, respectively.T N(|ψ |<1)

denotes a Normal distribution, truncated on the interval (−1 < ψ < 1). The hierarchical prior
is introduced intoβ so that the behavior ofβt follows a random walk process, implying thatβt

has a stochastic time trend. SinceΣβ is treated as an unknown parameter and requires its own
prior, we assume the prior ofΣβ asΣβ ∼ IW(νβ0,Σβ0), whereIW( ) denotes the inverse Wishart
distribution.

The prior parameters areb0, Σ0, ν0i, ω0i, λmin, λmax, q0, σ2
ψ0, νβ0, andΣβ0. Theλmin andλmax

indicate the smallest and largest eigen value of theW, and we put a limit on the parameter space
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of ρt, such asλ−1
min < ρt < λ−1

max, which is a condition that guarantees| I N − ρtW | > 0. The other
prior parameters are assumed as follows:

b0 = 0 , Σ0 = 100∗ I k

ν0i = 3 , ω0i = 0.01 (i = 1,2, . . . ,N)

q0 = 0.8 , σ2
ψ0 = (q0/2)2

νβ0 = 3 , Σβ0 = 100∗ I k

wherek denotes the number of rows ofβ. Theσ2
ψ0 is chosen so thatψ lies in the positive area

with 95.4% probability, because we expect thatεt has a relatively high positive serial correlation.

3.3 Posterior Density Function

Having clarified the likelihood and the prior for our model, we now explain the posterior infer-
ence procedure. As is well known in the econometric literature, particularly Bayesian econo-
metrics, the posterior inference can be carried out by the Markov Chain Monte Carlo (MCMC)
method. This method allows us to generate samples from the joint posteriorπ(β,Dρ,ΣN, ψ,Σβ |
y) and the marginal posterior of each parameter. By using the samples generated by MCMC, it
can make a statistical inference about our posterior density.

The MCMC method requires us to draw samples from thefull conditional posterior for all of
the parameters, such asπ(β | Dρ,ΣN, ψ,Σβ, y), π(ρt | β,D−ρt ,ΣN, ψ,Σβ, y), π(ΣN | β,Dρ, ψ,Σβ, y),
π(ψ | β,Dρ,ΣN,Σβ, y), andπ(Σβ | β,Dρ,ΣN, ψ, y), whereD−ρt indicates the set of parameters
ρ1, ρ2, . . . , ρT except forρt. The method of generating samples from these full conditional dis-
tributions is discussed in Appendix B. For the estimation ofGAPt (t = 1,2, . . . ,T), we calculate
the posterior mean of̃Yt, using the MCMC draws such that

ˆ̃Yt =
1

R− R0

∑R−R0

r=R0+1

[∑N

i
exp

{
logLit + yit − ρ(r)

t

∑N

j=1
wi j yjt

}]
,

whereR is the number of MCMC replications,R0 is the length of burn-in period, andρ(r)
t is the

sample from the marginal posterior distribution ofρt. As mentioned in Appendix B, we setR =

500000 andR0 = 50000, and then 450000 replications are used to calculateˆ̃Yt, t = 1,2, . . . ,T.
Hence, by replacing̃Yt with ˆ̃Yt in Equation (7), we obtain the estimate ofGAPt.

4. Estimation Results

This paper used the panel data for 30 Chinese provinces (Chongqing is included in Sichuan)
from 1979 to 2003, and 46 Japanese prefectures (all except Okinawa) from fiscal years 1955 to
1998. The data description and source are reported in Appendix A. The estimation results are
shown in Figures 1–4.2)

4.1 China

As Figure 1 demonstrates, the magnitude of spatial externalitiesρt in China was 0.060 in 1979
and 0.183 in 2003. Theρt indicated a tendency to increase and statistical significant at 95%
credible interval, in the period 1994–2003. However, it was insignificant before 1993. This

2)All computations were implemented withOx version 4.04 (Doornik 2006).

5



indicates that the spatial externalities have appeared since 1993, and have contributed to the
growth of China’s economy since then.

The posterior mean ofαt, which indicates the capital elasticity, was 0.336 in 1979 and 0.468
in 2003. The capital elasticity declined between 1990 and 1994, but it showed a tendency to
increase throughout the sample period, and the mean of the growth rate between 1979 and
2003 was 1.33%.The posterior mean of logγt was 0.046 in 1979 and 0.381 in 2003. The one
of log (γt δt) was 0.368 in 1979 and 0.770 in 2003. Theγt andγt δt represent the exogenous
technology level of China’s inland and coastal regions, respectively. These results indicate that
the coastal technology level is higher than the inland level over the sample period. In addition,
the mean of the growth rate ofγt is 1.70% (1979–90), 2.72% (1990–95), and -0.37% (1995–
2003). On the other hand, that ofγt δt is 1.65% (1979–90), 4.52% (1990–95), and -0.75%
(1995-2003). The exogenous technology growth rate from 1990 to 1995 is higher in the coastal
region than in the inland region.

Figure 2 shows the posterior mean ofGAPt, Ỹt/Lt, andρt for China. China’sGAPt was
steadily increasing after 1992, the year in which Deng Xiaoping undertook hissouthern tourof
China. The value of the estimatedGAPt in 1992 was 0.101, and it reached 0.355 in 2003. These
results indicate that spatial externalities (or spatial multiplier effects) existed in the Chinese
economy in the 1990s, and significantly contributed to China’s rapid economic growth then.

4.2 Japan

Figure 3 shows Japan’s estimation results. The posterior mean ofρt was significant from 1960
to 1974 and from 1985 to 1991, and remained insignificant during the other periods. The
arithmetic mean of the estimatedρt over the sample period was 0.105, and its minimum value
was 0.014 in 1956, and the maximum value was 0.200 in 1969. While China’sρt showed a
rising tendency in the 1990s, Japan’sρt showed fluctuating values, and it was not constant over
the period studied.

The posterior mean ofαt in Japan was 0.554 in 1955 and 0.568 in 1998, and its arithmetic
mean over the sample period was 0.560. In comparison with that in China, capital elasticity
in Japan was higher and more stable throughout the sample period. The posterior mean of
logγt was -0.172 in 1955 and 0.080 in 1998. Japan’sγt tended to increase from 1955 to 1975
(the mean of the growth rate was 1.79% in this period), and after 1975 it decreased slightly, or
remained almost constant. The mean of growth rate ofγt over the sample period in Japan was
0.56%, i.e., lower than in China.

Figure 4 displays Japan’s posterior mean ofGAPt, Ỹt/Lt, andρt. TheGAPt andρt showed
an increasing phase and a decreasing phase over the period studied. The value of the estimated
GAPt was 0.229 in 1972, 0.049 in 1980, and 0.253 in 1988. The two phases are probably related
to the Japanese business cycle, becauseGAPt showed a high value in the period of the economic
boom between 1965 and 1973 (Izanagi boom) and between 1986 and 1991 (Heisei boom), but
decreased in the economic depression, due to the twoOil crises, in 1973 and 1979, and to the
collapse of Japan’s economic bubble in 1991. Taking into account the behavior ofρt andGAPt

for both China and Japan, it may be assumed that spatial externalities correlate with business
conditions.

5. Conclusions

This paper used regional panel data for Chinese provinces from 1979 to 2003, and Japanese
prefectures from 1955 to 1998, to estimate the spatial externalities (or spatial multiplier effects),
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using a spatial lag model and Bayesian methodology, and analyzed the long-run behavior of
spatial externalities in China and Japan. According to the estimation results for China, spatial
externalities significantly increased domestic production from 1994 onwards, and tended to
increase until 2003. Before 1993, however, spatial externalities were insignificant.

Japan’s empirical results also show that spatial externalities contributed significantly to in-
creasing domestic production. Furthermore, the magnitude of the effects was not constant over
time, but included two phases, in which they exhibited high and low values, respectively. It
seems that the movement of spatial externalities is correlated with Japan’s business conditions,
in such a way that the externalities have a high value in an economic boom, and a low value in
an economic depression. These findings lead us to presume that spatial externalities correlate
mainly with business conditions.
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Appendix A. Data Description and Source

China’s data set, ofYit , Kit , andLit , is constructed as follows:Yit is a provincial gross value
added (Unit: million yuan) in 1990 prices, obtained by

Yit = NYi,1990×GDPIit (i = 1,2, . . . ,30 ; t = 1979,1980, . . . , 2003)

whereNYi,1990 is regioni’s nominal gross value added in 1990, andGDPIit is a real GDP index
at constant prices of 1990, normalized such asGDPIi,1990 = 1. NYi,1990 is taken fromChina
Statistical Year Book. GDPIit from 1978 to 1998 is available in Kato and Chen (2002) and
the remaining data, from 1999 to 2003, is obtained fromChina Statistical Year Book. Kit is
a provincial capital stock at 1990 prices (Unit: million yuan), obtained from Hashiguchi and
Chen (2006).Lit is the number of provincial employed persons (Unit: 1000 persons), calculated
by Lit = 0.5× (Lyeit − Lyei,t−1), whereLyeit is the number of persons employed at the end of the
year, taken from Kato and Chen (2002) for 1978 to 1998, and from theChina Statistical Year
Bookfor 1999 to 2003.

Japan’s data set is constructed as follows.Yit is the gross prefectural products at 1990 price,
obtained from theReport on the Prefectural Accounts from 1955 to 1974, for 1955 to 1974, and
from theAnnual Report on the Prefectural Accountsfor 1975 to 1998.Kit consists of the sum
of the social and private capital stock at 1990 prices (Unit: million yen) [both figures from Doi
(2002)]. Lit is the number of employed persons, taken from Doi (2002) for 1955 to 1974, and
from theAnnual Report on the Prefectural Accountsfor 1975 to 1998 (Unit: persons).

For the specification of the spatial weight matrixW, we used the notion of binary contiguity
(Anselin 1988, pp. 18–19), assuming that regionsi and j are regarded as neighbors (ci j = 1) if
they have a common border.3)

Appendix B. Full Conditional Posterior Density and MCMC Algorithm

The Appendix shows how to generate samples from the full conditional posterior distribution,
and the MCMC algorithm.

3)Since Japan consists of four main islands (Hokkaido, Honshu, Shikoku, and Kyushu), these islands do not
border on each other. However, as Kakamu et al. (2007) mentioned, they are connected by a bridge, tunnel, or
railway. We assume that Hokkaido neighbors on Aomori (in Honshu), Hyogo (in Honshu) neighbors on Tokushima
(in Shikoku), Okayama (in Honshu) neighbors on Kagawa (in Shikoku), Hiroshima (in Honshu) neighbors on
Ehime (in Shikoku), and Yamaguchi (in Honshu) neighbors on Fukuoka (in Kyushu). Hainan, which is an island
of China, is assumed to neighbor on Guangdong (on China’s main land).
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B1. Full Conditional Posterior of β

As mentioned in section 3.2, we have assumed that the behavior ofβ1,β2, . . . ,βT follows a
random walk process: that is, a stochastic time trend. Let us now regardβ1,β2, . . . ,βT as state
variables, and exploit a state-space representation to efficiently drawβ from the full conditional
posterior. To derive the state-space form, we modify Equation (4), such that

ȳt = Xt βt + εt (13)

whereȳt = (I N − ρt W) yt, which is given under the full conditional distribution. By applying
Prais-Winsten transformation, Equation (13) is reformulated as follows:

ȳ∗t =
[
X∗t MX ∗t

] [ βt

βt−1

]
+ ηt (t = 1,2, . . .T) (14)

where

ȳ∗t =


√

1− ψ2 ȳ1 (t = 1)

ȳt − ψȳt−1 (t = 2,3, . . . ,T)

X∗t =


√

1− ψ2 X1 (t = 1)

Xt (t = 2,3, . . . ,T)

MX ∗t =


0 (t = 1)

−ψXt−1 (t = 2,3, . . . ,T) .

Then, the linear Gaussian state-space representation is given by

βt+1

βt

ȳ∗t

 =


I K 0
I K 0
X∗t MX ∗t


[
βt

βt−1

]
+


ut

0
ηt




ut

0
ηt

 ∼ N(0, Ωβ) (t = 1,2, . . . ,T) (15)

[
β1

β0

]
∼ N

([
b0

0

]
,

[
Σ0 0
0 0

])
Ωβ =


Σβ 0 0
0 0 0
0 0 ΣN

 .

Having formulated the state-space form, it is possible to exploit the simulation smoother, which
is known in the literature of time series analysis (Durbin and Koopman 2001), to draw the sam-
ple from the full conditional posterior ofβ. This paper used the simulation smoother developed
by Durbin and Koopman (2002), using the following procedure:

Algorithm of Simulation Smoother forβ
(i) For t = 1,2, . . . ,T, draw random variablesut andηt from N(0,Ωβ), and use them to draw

βt andȳ∗t through Equation (15), whereβ1 is generated byN(b0,Σ0). The realized random
variables are written byβ+ = (β+

1 ,β
+
2 , . . . ,β

+
T) andȳ∗+ = (ȳ∗+1 , ȳ

∗+
2 , . . . , ȳ

∗+
T ).

(ii) Using the simulated̄y∗+t and the real observed̄y∗t , calculate the smoothing estimates ofβ
such aŝβ+ = E(β | ΣN,Σβ, ȳ∗+t ) andβ̂ = E(β | ΣN,Σβ, ȳ∗t ).

(iii) Calculateβ̃ = β̂ + β+ − β̂+.

Consequently,̃β follows the full conditional distribution ofβ. The calculation of the smoothing
estimates ofβ was made bySsfPack 2.2(Koopman et al. 1999), which is the package ofOx
version 4.04 programming language (Doornik 2006).
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B2. Full Conditional Posterior of ρt, (t = 1,2, . . . ,T)

The full conditional posterior ofρt, (t = 1,2, . . . ,T) is given by the following form

π(ρt | β,D−ρtΣN, ψ,Σβ, y) ∝ | I N − ρtW |exp

{
− 1

2σ̂2
ρt

(ρt − ρ̂t)
2

}
I (λ−1

min < ρt < λ
−1
max) (16)

σ̂2
ρt

=



[
(W y1)′Σ−1

N (W y1)
]−1

(t = 1)[
(W y t)′ (1 + ψ2) Σ−1

N (W y t)
]−1

(2 ≤ t < T)[
(W yT)′Σ−1

N (W yT)
]−1

(t = T)

ρ̂t =



σ̂2
ρ1
· (W y1)′Σ−1

N (y1 − X1β1 − ψ ε2) (t = 1)

σ̂2
ρt
· (W y t)′Σ−1

N

[
(1 + ψ2)(yt − Xt βt) − ψ(εt−1 + εt+1)

]
(2 ≤ t < T)

σ̂2
ρT
· (W yT)′Σ−1

N (yT − XT βT − ψ εT−1) (t = T).

whereI (λ−1
min < ρt < λ−1

max) is an indicator function that is equal to 1 ifρt lies inside the interval
betweenλ−1

min andλ−1
max, and is equal to 0 otherwise. Since the density is not standard, we use

the Metropolis-Hastings (MH) algorithm to draw a sample from Equation (16). The algorithm
takes the following procedure:

MH Algorithm forρt, (t = 1,2, . . . ,T)
Suppose thatr is the number of times of MCMC sampling, and choose an arbitrary starting

valueρ(r)
t (r = 0).

(i) Draw ρ∗t , as a candidate ofρ(r)
t , from the candidate generating densityq(ρ∗t | ρ(r−1)

t ).
(ii) Calculate an acceptance probabilityα(ρ∗t , ρ

(r−1)
t ).

(iii) Set ρ(r)
t = ρ∗t with probability α(ρ∗t , ρ

(r−1)
t ), and setρ(r)

t = ρ(r−1)
t with probability 1−

α(ρ∗t , ρ
(r−1)
t ).

As the candidate generating density, we exploitT N(λ−1
min<ρt<λ

−1
max)(ρ̂t, σ̂

2
t ), which denotes a Nor-

mal distribution truncated on the intervalλ−1
min < ρt < λ−1

max, and consequently the acceptance
probability results in

α(ρ∗t , ρ
(r−1)
t ) = min

1,
| I N − ρ∗t W |
| I N − ρ(r−1)

t W |

 .

B3. Full Conditional Posterior of ψ

The full conditional posterior ofψ is given by

π(ψ | β,Dρ,ΣN,Σβ, y) ∝ A(ψ) × exp

−
1

2σ2
ψ1

(ψ − q1)
2

 I (|ψ | < 1) (17)

whereI (|ψ | < 1) is an indicator function that is equal to 1 if|ψ | < 1, and is equal to 0 otherwise,
and

A(ψ) = (1− ψ2)
N
2 exp

{
−1

2

[
ε′1(1− ψ2)Σ−1

N ε1

]}

σ2
ψ1 =

(∑T

t=2
ε′t−1Σ

−1
N εt−1 + σ−2

ψ0

)−1

q1 = σ2
ψ1

(∑T

t=2
ε′t−1Σ

−1
N εt + σ−2

ψ0 q0

)
.
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The density is also not standard in the case ofρt, and hence we use the MH algorithm described
above. We adoptN(q1, σ

2
ψ1) as the candidate generating distribution, and then the acceptance

probability takes the following form:

αψ(ψ∗, ψ(r−1)) = min

{
1,

A(ψ∗)
A(ψ(r−1))

}
.

B4. Full Conditional Posterior of ΣN and Σβ

Lastly, the full conditional posterior ofΣN, which is the diagonal matrix of (σ2
1, σ

2
2, . . . , σ

2
N),

andΣβ, takes a form such as

σ2
i | β,Dρ, ψ,Σβ, y ∼ IG

(
ν1i

2
,
ω1i

2

)
(i = 1,2, . . . ,N) (18)

ν1i = ν0i + T

ω1i =

(
(1− ψ2)ε2

i1 +
∑T

t=2
(εit − ψεi,t−1)

2
)

+ ω0i

Σβ | β,Dρ,ΣN, ψ, y ∼ IW
(
νβ1, Σβ1

)
(19)

νβ1 = νβ0 + T − 1

Σβ1 =

[∑T−1

t=1
(βt+1 − βt)(βt+1 − βt)

′ + Σ−1
β0

]−1

whereεit = yit − ρt
∑N

j=1 wi j yjt − xit βt.

B5. MCMC Algorithm

Now, we show the MCMC algorithm that obtains samples from the posterior distribution.

MCMC Algorithm
Suppose thatr is the number of times of MCMC sampling.
(i) Choose the arbitrary initial value for all parameters and set upr = 1.
(ii) Repeat the following sampling:

Drawβ(r) from π(β | ρ(r−1)
1 , ρ(r−1)

2 , . . . , ρ(r−1)
T ,Σ(r−1)

N , ψ(r−1),Σ(r−1)
β , y).

Drawρ(r)
1 from π(ρ1 | β(r), ρ(r−1)

2 , ρ(r−1)
3 , . . . , ρ(r−1)

T ,Σ(r−1)
N , ψ(r−1),Σ(r−1)

β , y).

Drawρ(r)
2 from π(ρ2 | β(r), ρ(r)

1 , ρ
(r−1)
3 , . . . , ρ(r−1)

T ,Σ(r−1)
N , ψ(r−1),Σ(r−1)

β , y).
...

Drawρ(r)
T from π(ρT | β(r), ρ(r)

1 , ρ
(r)
2 , . . . , ρ

(r)
T−1,Σ

(r−1)
N , ψ(r−1),Σ(r−1)

β , y).

Drawψ(r) from π(ψ | β(r), ρ(r)
1 , ρ

(r)
2 , . . . , ρ

(r)
T ,Σ

(r−1)
N ,Σ(r)

β , y).

DrawΣ
(r)
N from π(ΣN | β, ρ(r)

1 , ρ
(r)
2 , . . . , ρ

(r)
T , ψ

(r),Σ(r−1)
β , y).

DrawΣ
(r)
β from π(Σβ | β(r), ρ(r)

1 , ρ
(r)
2 , . . . , ρ

(r)
T ,Σ

(r)
N , ψ

(r), y).
If r < R, setr = r + 1 and return to (ii). Otherwise, go to (iii).

(iii) Discard the draws with the superscriptr = 1,2, . . . ,R0, and save the draws withr =

R0 + 1,R0 + 2, . . . ,R.

In this paper, we takeR = 500000 andR0 = 50000, and then 450000 replications are retained
and exploited to implement the posterior inference.
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Figure 1: Posterior Mean and 95% Credible Interval (China)
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Figure 2: The Difference BetweenY/L andỸ/L (China)
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Figure 3: Posterior Mean and 95% Credible Interval (Japan)
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Figure 4: The Difference BetweenY/L andỸ/L (Japan)
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