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Abstract 

EUAs are European Union Allowances traded on the EU Emissions Trading Scheme (EU ETS), while Certified 
Emissions Reductions (CERs) arise from the Clean Development Mechanism under the Kyoto Protocol. These 
emissions assets attract an increasing attention among brokers, investors and operators on emissions markets, because 
they may be both used for compliance under the EU ETS (up to fixed limits). This paper proposes a statistical analysis 
of the inter-relationships between EUA and CER price series, by using vector autoregression, impulse response 
function, and cointegration analysis on daily data from March 9, 2007 to January 14, 2010. The central results show 
that EUAs and CERs affect each other significantly through the vector autoregression model, and react quite rapidly to 
shocks on each other through the impulse response function analysis. Most importantly, both price series are found to 
be cointegrated, with EUAs leading the price discovery process in the long-term through the vector error correction 
mechanism.
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1 Introduction

The EU ETS is the cornerstone of European climate policy. It distributes to industry a fixed
quota of carbon emissions permits, which trade at a certain carbon price. EUAs (EU Allowances)
are the tradable unit under the EU ETS. The scheme allows companies a cheap alternative way
to meet their carbon caps, buying Certified Emissions Reductions (CERs) from developing
countries, funding emissions cuts there instead1. Primary CERs (pCERs) are purchases direct
from projects. Secondary CERs (sCERs) are free of project risks and traded on exchanges. We
choose to focus in this paper on sCERs, since pCERs carry a high degree of delivery risk which
is currently not priced on exchanges. Albeit being determined on distinct emissions markets,
sCERs and EUAs may be exchanged based on their representative trading unit. One sCER is
indeed equal to one ton of CO2-equivalent emissions reduction, while one EUA is equal to one
ton of CO2 emitted in the atmosphere.

This paper develops - to our best knowledge - the first statistical anaylsis of the price rela-
tionships between EUAs and sCERs, which are both fungible under the EU ETS.2 While both
EUAs and sCERs prices influence each other statistically, as shown by vector autoregressive
modeling and Granger causality tests, our central results identifies the existence of one cointe-
grating relationship between EUAs and sCERs prices by using daily data from March 9, 2007
to January 14, 2010. Therefore, we are able to conclude that the EUA price is the leader in
the long-term price discovery. This result may be explained by predominant role of the EU
ETS, which is the most developed and liquid emissions market to date. The existence of a price
difference of EUAs and the market for secondary CERs could be explained by the existence of
various risk-premia embedded in sCERs compared to holding EUAs.

The remainder of the paper is organized as follows. Section 2 presents the data. Section 3
provides unit root tests. Section 4 describes the vector autoregressive structure between EUA
and sCER prices. Section 5 presents cointegration results. Section 6 concludes.

2 Data

For EUAs, we use futures prices with a daily frequency. The most liquid platform for futures
prices is the European Climate Exchange (ECX). For sCERs, we work with the Reuters CER
price index, which is available since March 9, 2007. Our dataset ends on January 14, 2010. Our
sample contains 729 daily observations for both price series. As is common practice (Carchano
and Pardo (2009)), we roll over the futures contracts of various maturities.

The time-series of EUA and sCER prices are pictured in Figure 1. EUAs were trading at
=C15 in March 2007, then stayed in the range of =C19-25 until July 2008, and decreased steadily
afterwards to achieve =C8 in February 2009. sCERs started at =C12.5 in March 2007, evolved in
the range of =C12-22 through July 2008, and continued to track EUA prices until =C7 in February
2009. We observe that the sCER price evolution is not completely independent of EUA prices:
the sCER price seems to be computed with a risk-premium from EUA prices. On January 14,
2010, sCERs traded at 11.78=C, while EUAs traded at 13.60=C. Table 1 provides descriptive
statistics.

1According to the article 12 of the Kyoto Protocol, projects under the Clean Development Mechanism consist
in achieving greenhouse gases emissions reduction in non-Annex B countries. After validation, the United Nations
Framework Convention on Climate Change (UNFCCC) delivers credits that may be used by Annex B countries
for use towards their compliance position.

2Indeed, the EU Linking Directive allows the import for compliance into the EU ETS up to 13.4% of CERs
on average.
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3 Unit Root Tests

In this section, we develop standard unit root tests that we apply to both EUAs and sCERs
price series. Dickey-Fuller (1979) test the nullity of the coefficient α in the following regression:

∆xt = xt+1 − xt = αxt + β + et

- if α is significantly negative, then we say that the process xt has no unit root, or that it is
stationary, inducing a mean-reverting behavior for the prices;

- if α is not significantly different from 0, then we say that the process xt ’has a unit root’,
inducing a random walk behavior for the prices.

In practice, Augmented-Dickey-Fuller (ADF, 1981) or Phillips-Peron (PP, 1988) tests are
used rather than Dickey-Fuller. These tests are based on the same principle but correct for
potential serial autocorrelation and time trend in ∆xt through a more complicated regression :

∆xt =
L

∑

i=1

βi∆xt−i + αxt + β1t + β2 + et

The ADF test tests the null hypothesis H0 that α = 0 (the alternative hypothesis H1 being
that α < 0) by computing the Ordinary Least Squares (OLS) estimate of α in the previous
equation and its t-statistics t̂; then, the statistics of the test is the t-statistics t̂α of coefficient
α, which follows under H0 a known law (studied by Fuller and here denoted Ful). The test
computes the p-value p, which is the probability of Ful ≤ t̂ under H0. If p < 0.05, H0 can be
safely rejected and H1 accepted: we conclude that the series ’xt has no unit root’. Extensions
of these stationarity tests were also developed by Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS, 1992).

We report the ADF, PP, and KPSS tests for EUA and sCER prices in Tables 2 and 3,
respectively. From these tests, we conclude that both price series are integrated of order 1
(I(1)), i.e. when they are stationary when transformed to first-differences.

4 Vector AutoRegressive Model

The traditional model for studying correlated stationary prices is the Vector-Auto-Regressive
model (VAR), which is the multi-variate extension of the AR model (Watson (1994)).

4.1 VAR Model Representation

Let Zt =

(

X1
t

X2
t

)

be the vector process formed of the two (properly transformed to stationary)

EUA and sCER prices. Then, the VAR(p) model reads :

Zt = C + Γ1Zt−1 + . . . + ΓpZt−p + ǫt

where C =

(

C1

C2

)

is a constant vector, Γ1, . . . , Γp are 2x2 matrices and the vector process

ǫt =

(

ǫ1
t

ǫ2
t

)

is formed of independent random variables following a centered bi-variate normal

distribution N(0,
∑

).
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4.2 Parameters estimation

The calibration of the model VAR(p) proceeds in three classic steps:

1. the optimal order p is selected using an information criterion, which is an indicator of the
relevance of a model, giving a positive weight to the likelihood of the model and a negative
weight to the number of model parameters ; e.g., the Schwarz Information Criterion (SIC)
is equal to 2LL− ln(T )n, where LL is the log-likelihood, T is the number of observations
and n is the number of parameters of the model.

2. once p is known, C, Γ1, . . . , Γp are determined by OLS.

3. lastly, the standard deviation and correlation of the residuals give matrix
∑

Based on the SIC, we choose to implement the most parsimonious VAR(p) model of order
1 (VAR(1)). Table 4 shows Vector Autoregression estimates. We observe that lagged sCER
prices impact EUA prices, and that sCER prices are best explained by an AR(1), at the 1%
significance level.

4.3 Causality in the Granger sense

We will say that a process P 1
t Granger causes P 2

t at the order p if, in the linear regression of P 2
t

on lagged prices P 1
t−1, . . . , P

1
t−p, P

2
t−1, . . . , P

2
t−p, at least one of the regression coefficients of P 1

t on
the lagged prices P 2

t−1, . . . , P
2
t−p is significantly different from 0. The intuition behind Granger

causality is that the information on past prices P 2
t−1, . . . , P

2
t−p is relevant to forecast P 1

t at future
time t.

Granger causality is examined using the Granger causality test testing the null hypothesis
H0 that all regression coefficients of P 1

t on the lagged prices P 2
t−1, . . . , P

2
t−p are null. A p-value

lower than 0.05 means that H0 can be rejected (and causality accepted) with 95% confidence
level.

Table 5 presents pairwise Granger causality tests results. We identify that a positive causality
runs from EUA returns to sCER returns, and conversely3. Hence, we confirm our analysis
that both price series are inter-related. This is also meaningful in an economic context to
find that EUAs and sCERs are inter-related, since they both represent the same emissions
asset that can be used for arbitrage purposes for compliance within the European trading
system4. Since Granger causality test results are also useful to determine the order of the
Cholesky decomposition in the impulse response function analysis, it thus follows very logically
to simulate random shocks in the next section in order to have a better understanding of the
interrelationships between the two variables.

4.4 VAR Dynamics

Following Granger causality tests, it appears interesting to study further the behaviour of the
pairs EUA/sCER through the dynamic structure of the VAR(1) model by performing Impulse
Response Function (IRF) analysis (Pesaran and Shin (1998)).

3As shown in Table 5, the results obtained are not sensitive to the order of the lag retained for the Granger
causality test.

4Note this question of arbitrage goes beyond the scope of the present article.
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4.4.1 Shocks analysis: Impulse Response Functions

Figure 2 shows the results of the IRF analysis. We observe that both price series react rapidly
(at time t = 2) and positively to a shock on the other variable in the system. The effects of
the initial shock are dampened are time t = 3, and disappear at time t = 5. EUAs and sCERs
therefore exhibit the same pattern in terms of responses to exogenous shocks. Besides, this
oscillation towards zero is characteristic of stationary VAR models.

4.4.2 Variance decomposition

We also perform variance decomposition analysis for the pair EUA/sCER. In Figure 3, we
observe that the variance of the forecast error of the EUA variable is due to 66% to its own
innovations, and to 33% to the innovations of the sCER variable. The variance of the forecast
error of the sCER variable is due to 32% to the EUA variable, and to 68% to itself. This graph
therefore confirms the statistical influences running both ways between EUA and sCER prices.

5 Cointegration Analysis using Johansen’s procedure

In this section, we use the concept of cointegration to look for a stationary linear combination
of EUA and sCER prices, which will represent the long-run equilibrium. Then, we study the
error-correction mechanisms insuring the reversion to the long-run equilibrium.

5.1 Conditions for cointegration

First, we have checked in Section 3 based on standard stationarity tests that the prices of EUA
and sCER are non stationary and integrated of order one. This amounts to checking that
they are difference stationary, i.e. ∆Xe

t and ∆Xe′

t are stationary. The fact that the series are
integrated of the same order is indeed a pre-requisite condition for cointegration.

The next step of the cointegration model consists in describing the dynamics of EUAs and
sCERs in terms of the residuals of the long-term relation (Johansen (1988)):

(

∆Xe
t

∆Xe′

t

)

=

(

µe

µe′

)

+
∑p

k=1 Γk

(

∆Xe
t−k

∆Xe′

t−k

)

+

(

Πe

Πe′

)

Rt +

(

ǫe
t

ǫe′

t

)

where

• e stands for EUA, and e′ stands for sCER;

• Xe
t is the log price of variable e at time t;

• the 2x1 vector process ∆Zt =
(

∆Xe
t = Xe

t+1 − Xe
t , ∆Xe′

t = Xe′

t+1 − Xe′

t

)

′

is the vector of
EUA and sCER price returns;

• µ = (µX,e, µX,e′) is the 1x2 vector composed of the constant part of the drifts;

• Γk are 2x2 matrices expressing dependence on lagged returns;

• (Rt = Xe
t − βXe′

t ) is the process composed of the deviations to the long-term relation
between the EUA and sCER log prices;

• Π is a 2x1 vector matrix expressing sensitivity to the deviations to the long-term relation
between the EUA and sCER prices;

• the residual shocks (ǫe
t , ǫ

e′

t ) are assumed to be i.i.d with a centered bi-variate normal
distribution N(0,

∑

).
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5.2 Cointegration Relation Tests

We need to check here if the EUA and sCER variables are cointegrated, i.e. if β exists such
that Rt = Xe

t −βXe′

t is stationary. This can be done by performing an OLS regression of Xe
t on

Xe′

t or more rigorously by using the Johansen cointegration test (Johansen and Juselius (1990),
Johansen (1991)).

We want to introduce an error-correction mechanism on the levels and on the slopes between
the variables e and e′.

Let Xt be a vector of N variables, all I(1):

Xt = Φ1Xt−1 + . . . + ΦpXt−p + ǫt

with ǫt ∼ WGN(0, Ω), WGN denotes the White Gaussian Noise, Ω denotes the variance
covariance matrix, and Φi (i = 1, . . . , p) are parameter matrices of size (NxN).

Under the null H0, there exists r cointegration relationships between N variables, i.e. Xt is
cointegrated with rank r.

The error correction model writes:

∆Xt = Π1∆Xt−1 + . . . + Πp−1∆Xt−p+1 + ΠpXt−p + ǫt

where the matrices Πi (i = 1, . . . , p) are of size (NxN).
All variables are I(0), except Xt−p which is I(1).
For all variables to be I(0), ΠpXt−p needs to be I(0) as well.
Let Πp = −βα′, where α′ is an (r,N) matrix which contains r cointegration vectors, and β

is an (N, r) matrix which contains the weights associated with each vector.
If there exists r cointegration relationships, then Rk(Πp) = r. Johansen’s cointegration tests

are based on this condition.

∆Xt = Π1∆Xt−1 + . . . + Πp−1∆Xt−p+1 − βα′Xt−p + ǫt

We computed the trace test statistics and maximum eigenvalue test statistics associated
with Johansen’s methodology. Table 6 shows the Johansen Cointegration Rank Tests results.
Both the Trace test and the Maximum Eigenvalue test indicate the presence of one cointegrating
relationship between EUAs and sCERs at the 5% significance level.

5.3 Estimation of the Error Correction Model

Table 7 shows the Vector Error Correction Model (VECM) estimated through maximum likeli-
hood methods (Johansen and Juselius (1990), Johansen (1991)). The VECM representation is
validated by the fact that both coefficients in the cointegrating equation for EUAs and sCERs
are significantly negative at the 1% level.

This result illustrates the error correction mechanism which leads towards the long-term
stationary relationship between EUAs and sCERs. This relationship is pictured in Figure 4. We
observe that EUA and sCER returns indeed correct the deviations to the long-term equilibrium.

Besides, we observe that the coefficient for the EUA variable (-0.016) is higher than the
coefficient for the sCER variable (-0.057), from which we can safely conclude that the EUA
price is the leader in the long-term price discovery. Indeed, by combining linearly the short-
term variations of EUAs and sCERs, the vector error correction mechanism allows by definition
to diminish the fluctuation errors in order to achieve the cointegrating relationship between
both variables. Figure 4 shows a reduction in variability in the cointegration relationship in
the long-term, as predicted by the vector error correction model. Hence, by looking at the
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coefficients of the error correction model, we can infer which variable is driving the adjustment
towards the long-term relationship in the system.

Finally, we notice the presence of a trend in the cointegrating equation, and the influence of
the log-differenced EUA variable lagged one period (the log-differenced sCER variable lagged
one period) on the log-differenced sCER variable (the log-differenced EUA variable) at the 1%
significance level.

6 Conclusion

This paper contributes to the analysis of emissions trading schemes by documenting the statis-
tical relationships between EUAs and sCERs with daily data from March 9, 2007 to January
14, 2010. Testing these inter-relationships appears indeed of particular importance to investors
and energy utilities who can ’choose’ - up to a fixed limit - between these two assets to exchange
emissions allowances and to use them towards compliance within the EU system.

Our results show that there is a clear link between EUAs and sCERs prices: not only do
they affect each other at statistically significant levels as shown by the vector autoregressive
modeling, but also the transmission of shocks from one price series to the other is quite rapid
and significant, as shown by impulse response function analysis.

Interestingly, we are able to identify one cointegrating relationship between EUAs and
sCERs, which indicates that a long-term relationship exists between these two variables. Fi-
nally, our vector error correction models indicates that EUAs tend to lead sCERs in the price
discovery process. This result may be explained by the fact that EUAs are the most heavily
traded assets when investors, brokers and industrials need to use carbon prices.
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Figure 1: Time-Series of EUA and sCER Prices.
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Figure 2: Impulse Response Function Analysis.
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Figure 3: Variance Decomposition Analysis.
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Figure 4: Cointegrating Relation.
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Table 1: Descriptive Statistics.

EUA sCER
Mean 18.62012 14.87575

Median 19.29000 14.73000
Maximum 29.33000 22.85000
Minimum 8.200000 7.484615
Std. Dev. 4.791531 3.034598
Skewness 0.007144 0.238988
Kurtosis 1.816024 2.511116

Jarque-Bera 42.58584 14.19936
Observations 729 729

Note: Std. Dev. refers to Standard Deviation.
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Table 2: Unit Root Tests for EUA Prices.

t-Statistic Test critical values
Augmented Dickey-Fuller test statistic -24.86266 -1.941259

Phillips-Perron test statistic -24.80740 -1.941259

LM-Stat. Asymptotic critical values
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.256730 0.463000

Note: For the ADF and PP tests, the null hypothesis is D(EUA) has a unit root (where D(EUA)

stands for the first-difference transformation of the EUA price variable). For the ADF test, a lag

length of 5 is specified based on the Schwarz Information Criterion. For the PP test, a Bartlett kernel

of bandwith 5 is specified using the Newey-West procedure. For both tests, Model 1 (without trend nor

intercept) is chosen. Test critical values at the 5% level are based on MacKinnon (1996). For the

KPSS, the null hypothesis is D(EUA) is stationary. A Bartlett kernel of bandwith 6 is specified using

the Newey-West procedure. Asymptotic critical values at the 5% level are based on KPSS (1992).

Model 2 (with intercept) is chosen.

12



Table 3: Unit Root Tests for sCER Prices.

t-Statistic Test critical values
Augmented Dickey-Fuller test statistic -25.80513 -1.941259

Phillips-Perron test statistic -25.90880 -1.941259

LM-Stat. Asymptotic critical values
Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.166469 0.463000

Note: For the ADF and PP tests, the null hypothesis is D(sCER) has a unit root (where D(sCER)

stands for the first-difference transformation of the sCER price variable). For the ADF test, a lag

length of 0 is specified based on the Schwarz Information Criterion. For the PP test, a Bartlett kernel

of bandwith 9 is specified using the Newey-West procedure. For both tests, Model 1 (without trend nor

intercept) is chosen. Test critical values at the 5% level are based on MacKinnon (1996). For the

KPSS, the null hypothesis is D(sCER) is stationary. A Bartlett kernel of bandwith 9 is specified using

the Newey-West procedure. Asymptotic critical values at the 5% level are based on KPSS (1992).

Model 2 (with intercept) is chosen.
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Table 4: Vector Autoregression Estimates.

D(EUA) D(sCER)
D(EUA(-1)) -0.040544 0.104888

(0.04331) (0.03257)
[-0.93607] [ 3.22083]

D(sCER(-1)) 0.299049 -0.033974
(0.05836) (0.04388)
[ 5.12404] [-0.77426]

C -0.001710 -0.001097
(0.01633) (0.01228)
[-0.10471] [-0.08935]

Schwarz information criterion 1.505285

Note: Standard errors in ( ). t-statistics in [ ]. VAR(1) is chosen by minimizing the Schwarz
information criterion. D(EUA) and D(sCER) stand for the first-difference transformation of the EUA
and sCER price variables, respectively. D(EUA(-1)) and D(sCER(-1)) stand for the first-difference
transformation lagged one period of the EUA and sCER price variables, respectively. C stands for the
constant. The estimates are presented explicitly under the following form:

D(EUA) = − 0.040544 ∗ D(EUA(−1)) + 0.299049 ∗ D(sCER(−1)) − 0.001710

D(sCER) =0.104888 ∗ D(EUA(−1)) − 0.033974 ∗ D(sCER(−1)) − 0.001097
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Table 5: Pairwise Granger Causality Tests.

Lags: 2
Null Hypothesis: Obs F-Statistic Probability

D(sCER) does not Granger Cause D(EUA) 726 16.4668 1.0E-07
D(EUA) does not Granger Cause D(sCER) 7.99662 0.00037

Lags: 4
Null Hypothesis: Obs F-Statistic Probability

D(sCER) does not Granger Cause D(EUA) 726 12.4459 8.6E-10
D(EUA) does not Granger Cause D(sCER) 7.73055 4.2E-06

Lags: 6
Null Hypothesis: Obs F-Statistic Probability

D(sCER) does not Granger Cause D(EUA) 726 9.69815 2.8E-10
D(EUA) does not Granger Cause D(sCER) 5.83319 6.0E-06

Note: D(EUA) and D(sCER) stand for the first-difference transformation of the EUA and sCER price

variables, respectively.
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Table 6: Johansen Cointegration Rank Tests.

Series: LOG(EUA) LOG(sCER)
Lags interval (in first differences): 1 to 1

Trace Test

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.028097 28.49151 25.87211 0.0231
At most 1 0.010635 7.772792 12.51798 0.2708

Maximum Eigenvalue Test

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

None * 0.028097 20.71872 19.38704 0.0319
At most 1 0.010635 7.772792 12.51798 0.2708

Note: LOG(EUA) and LOG(sCER) stand for the logarithmic transformation of the EUA and sCER

price variables, respectively. CE refers to Cointegrating Equation. Included observations: 727 after

adjustments. Trend assumption: Linear deterministic trend. * denotes rejection of the hypothesis at

the 0.05 level. **MacKinnon-Haug-Michelis (1999) p-values. Trace test indicates 1 cointegrating

eqn(s) at the 0.05 level. Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level.
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Table 7: Vector Error Correction Estimates.

Cointegrating Eq: CointEq1
LOG(EUA(-1)) 1.000000

LOG(sCER(-1)) -1.152348
(0.06573)
[-17.5320]

Trend 0.000241
(6.5E-05)
[ 3.71067]

C 0.109668

Error Correction: D(LOG(EUA)) D(LOG(sCER))
CointEq1 -0.015550 -0.056909

(0.001382) (0.01233)
[-11.2681] [ -4.61425]

D(LOG(EUA(-1))) 0.015105 0.230508
(0.04154) (0.03673)
[ 0.36365] [ 6.27514]

D(LOG(sCER(-1))) 0.216236 -0.026143
(0.04543) (0.04017)
[ 4.76006] [-0.65075]

C -0.000116 -7.82E-05
(0.00096) (0.00086)
[-0.12065] [-0.09100]

Note: LOG(EUA(-1)) and LOG(sCER(-1)) stand for the logarithmic transformation of the EUA and

sCER price variables lagged one period, respectively. CointEq stands for Cointegrating Equation.

D(LOG(EUA(-1))) and D(LOG(sCER(-1))) stand for the first-difference logarithmic transformation

of the EUA and sCER price variables lagged one period, respectively. Trend refers to the deterministic

trend. C refers to the constant. Included observations: 728 after adjustments. Standard errors in ( ).

t-statistics in [ ]. The model is estimated with intercept and trend in Cointegrating Equation and no

trend in the data (Johansen (1995)). The estimates are presented explicitly under the following form:

D(LOG(EUA)) = − 0.015550 ∗ (LOG(EUA(−1)) − 1.152348 ∗ LOG(sCER(−1)) + 0.000241 ∗ Trend + 0.109668)

+ 0.015105 ∗ D(LOG(EUA(−1))) + 0.216236 ∗ D(LOG(sCER(−1))) − 0.000116

D(LOG(sCER)) = − 0.056909 ∗ (LOG(EUA(−1)) − 1.152348 ∗ LOG(sCER(−1)) + 0.000241 ∗ Trend + 0.109668)

+ 0.230508 ∗ D(LOG(EUA(−1))) − 0.026143 ∗ D(LOG(sCER(−1))) − 0.0000782
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