
     

 

 

  

  

Volume 30, Issue 1 

  

Implied volatility and risk aversion in a simple model with uncertain growth  

  

 
 

Frederik Lundtofte  
Dept. of Economics, Lund University 

Abstract 

We show that a simple equilibrium model with uncertain growth is able to simultaneously generate patterns in implied 
volatility and risk aversion that are similar to the ones observed in the data.

I thank Nicole Branger, David Feldman, Fabio Trojani, Erik Lindström, and the participants at the 2005 Arne Ryde Workshop (Lund) and 
Risk Management: From Basel II to Basel III (Ascona) for helpful discussions. Financial support from the Jan Wallander and Tom Hedelius 
Foundation (grant W2005-0365:1) and the Swiss National Science Foundation (NCCR FINRISK and grant 100012-105745/1) is gratefully 
acknowledged. 
Citation: Frederik Lundtofte, (2010) ''Implied volatility and risk aversion in a simple model with uncertain growth '', Economics Bulletin, Vol. 
30 no.1 pp. 182-191. 
Submitted: Feb 27 2009.   Published: January 13, 2010. 

 

     



1

 1. Introduction  
We use a simple equilibrium model of parameter uncertainty to simultaneously generate 
patterns in implied volatility and risk aversion that are similar to those observed empirically, 
i.e., skews in implied volatilities, smiles in implied risk aversions, and negative values on 
implied risk aversions (Corrado and Su, 1997; Jackwerth, 2000). 
The stock return distribution becomes a mixture of lognormals, and the paper is thus related 
to Brigo, Mercurio and Rapisarda (2004). In Brigo, Mercurio and Rapisarda (2004), the stock 
return process is exogenously assumed. However, we present an equilibrium model in which 
the stock return process is endogenously determined. In contrast to Brigo, Mercurio and 
Rapisarda (2004), the stock return volatility is a known constant in this model, and 
uncertainty concerns the growth rate in the economy -- an inherently fundamental economic 
quantity. 
Our modeling induces a special form of state dependence on the stochastic discount factor. 
Thus, it is related to the works of Brown and Jackwerth (2000), Garcia, Luger and Renault 
(2001), Garcia, Ghysels and Renault (2007), and Chabi-Yo, Garcia and Renault (2008). The 
contribution of this paper is to construct a simple model with a state-dependent stochastic 
discount factor that is able to generate patterns in both implied volatility and risk aversion 
that are in line with empirical observations. 

 
 

2. The Model 
We consider a Lucas (1978) exchange economy with an infinitely-lived representative 
consumer, who has constant relative risk aversion γ>0. His instantantaneous utility of 
consumption is given by ( ) ( )1( ) 1 / 1u c c γ γ−= − − , and he maximizes his expected life-time 

utility of consumption, 
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0 [0, )

  
D tt

D tt

dt dW tdD
dt dW tD

θ σ ε
θ σ ε

+ ∈⎧
= ⎨ + ≥⎩

 

where ε >0 is an infinitesimal constant, 0θ  is a constant, σD is a positive constant, and Wt is a 
standard Brownian motion. Further, for [0, )t ε∈ , θ  is a stochastic variable, independent of 
Wt,  with the following distribution: 
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where 0>iv (i=1,2,…,n), and probabilities sum to one, 
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representative consumer knows the value of the growth rate θ .   
An interpretation of this set-up is that the representative consumer works with a number of 
scenarios for the growth rate, which is revealed to him at time t ε= . Thus, we can interpret 
our model as a stylized model of growth uncertainty. 
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 3. Theoretical Results 
In this section, we solve for the equilibrium and present some useful results regarding the 
implied risk aversion. 

 
 

3.1 Equilibrium 
Since this is a pure exchange economy with a perishable consumption good, aggregate 
consumption must equal aggregate dividends, and a pricing kernel is thus given by 
     t

t te Dβ γ− −Λ =        (1) 
(Cochrane, 2001, pp. 28-33). 
Using Ito's Lemma on equation (1), we can determine the risk free rate of return in the 
economy. 

 
Proposition 1: The interest rate, rt, is given by 
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Proof. The result follows from the fact that the risk free rate is given by 
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(Cochrane, 2001, pp. 28-33) and an application of Ito's Lemma. □ 

 
Given that the representative agent's time discount factor (β) is high enough, we can price the 
claim to the entire stream of aggregate endowments, which can be interpreted as a stock. 

 

Proposition 2: Given that 2(1 )
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 for all i, the price of the claim to the entire 
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Proof. Consider the price of the endowment stream from time t to time τ at time [0, )t ε∈  
(where ετ > ). Applying the law of iterated expectations and Fubini-Tonelli's theorem, we 
have that 
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As τ→∞ and  0ε → , 
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If t ε≥ , the true growth rate is known to the representative consumer, and hence the price of 
the endowment stream is  
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It is now easy to show that the instantaneous volatility of stock returns is constant and equals 
the volatility of dividends. 

 
Corollary 3: The instantaneous volatility of the stock return, σS, is constant, and equals the 
volatility of dividends, σS= σD. 
Proof. This result follows directly from the fact that the stock price is proportional to the 
current dividend (Proposition 2). □  
 
Due to uncertainty regarding the endowment growth rate, the time-0 subjective density 
function for the stock price is a mixture of lognormals. As seen in equation (3), conditional 
stock prices differ not only in terms of growth rates, but also in terms of their time-ε values 
(i.e. values immediately after time 0). Further, due to growth uncertainty, both the future 
interest rate and the future dividend yield are stochastic at time 0, and depend on the value of 
the future endowment growth rate. As a result, the time-0 price of a European call option 
becomes a convex combination of Merton (1973) prices under the different growth rates, 
where the weights are given by the probabilities of the growth rates. Note that we consider a 
representative-agent equilibrium with a non-satiated representative agent. By the 
Fundamental Theorem of Asset Pricing, the thus obtained equilibrium prices are free of 
arbitrage (e.g., Dybvig and Ross, 2003, and the references therein). 
 
Proposition 4: The time-0 equilibrium price of a European call option written on the stock, 
with strike price K and time to maturity T, is given by 
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Proof. Available from the author upon request. □ 
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We define the implied volatility as the volatility which makes the Merton (1973) call price 
equal the equilibrium call price.  
 
 

3.2 Implied Risk Aversion 
Measures of implied risk aversion are based on the following relation, shown in Aït-Sahalia 
and Lo (2000): 

   ( ) ( )( )
( ) ( )
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p S q SA S S S
p S q S
′ ′
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where ( )r TA S  is the relative risk aversion, ( )Tp S  is the subjective density function, ( )Tq S  is 
the risk-neutral density function, and TS  is the value of the stock. By definition, absolute risk 
aversion can be obtained by dividing relative risk aversion by TS . Estimates of the risk-
neutral density function are usually based on the following finding in Breeden and 
Litzenberger (1978): 
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where C is the price of a call option maturing at time T, and r is the interest rate. 
Call prices are typically estimated for strike prices for which there exist no traded options. 
Practically, the estimated call prices are obtained from inter- and extrapolations of the 
observed implied volatility surface. Here, we are going to disregard the effects of these 
estimation errors, i.e., in the calibration, we are going to calculate theoretical option prices 
directly for a large number of strike prices, and use these option prices to determine the 
second derivative numerically as 
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4. Calibration 
 In this section, we calibrate the model to the data, and we study patterns of implied volatility 
and implied risk aversion. Guided by the empirical results regarding aggregate dividends 
summarized in Campbell, Lo and MacKinlay (1997), we set the volatility of aggregate 
dividends (σD) to 12%. In accordance with the results in Hagiwara and Herce (1997) and 
Basak and Cuoco (1998), we set the coefficient of relative risk aversion (γ) to 3. For 
simplicity, we assume that the growth rate can only attain two possible values, θ1=2% or 
θ₂=3%. That is, the expected growth rate is between 2 and 3%, which roughly corresponds to 
the long-run real growth rate of the U.S. economy. We denote the probability of a low growth 
rate by v, and we set the time discount factor to β=0.05. 
 
 

4.1 Implied Volatility 
Given our definition of implied volatility as the volatility which makes the Merton (1973) 
call price equal the equilibrium call price, we follow most of the literature and solve for the 
implied volatility numerically. For an alternative way of solving for the implied volatility, we 
refer to Sukhomlin (2007).   
Although the stock volatility is constant in our model, a wide range of implied volatility 
shapes can be generated, depending on the representative agent's beliefs (see Figures 1 to 3). 
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The return distribution is a mixture of lognormals: a high (low) value on v means that a 
relatively high (low) weight is put on the return distribution implied by the low growth rate. 
For a high (low) value on v, the implied volatility exhibits a negatively (positively) sloped 
smirk pattern, whereas v=0.5 creates an implied volatility frown. One realistic property of the 
model is that the implied volatility shapes flatten out as time to maturity lengthens.  
 
 

4.2 Implied Risk Aversion 
 In addition, we investigate the model implications for implied risk aversion. Since most 
empirical studies on implied volatility have found a negatively sloped smirk pattern, we focus 
on the case v=0.9, to see whether we simultaneously can explain the negative values and 
smile patterns that have been found in empirical studies on implied risk aversion, such as 
Jackwerth (2000). 
Figure 4 shows that not only are we able to generate a smile pattern in implied risk aversion, 
but we are also able generate negative values. Figure 5 shows the corresponding implied 
pricing kernel as a function of the cash price (ST).1 We find that the implied pricing kernel is 
hump-shaped, i.e., for particular levels of wealth, it is in fact increasing. In the literature, this 
phenomenon is referred to as a “pricing kernel puzzle.” 
As Figure 6 illustrates, the measure developed by Aït-Sahalia and Lo (2000) of the implied 
risk aversion is very sensitive to misestimations of subjective beliefs. 
 
 

5. Conclusions 
By using a simple equilibrium model with uncertain growth, we are able to simultaneously 
generate patterns in implied volatility and risk aversion that are similar to what is observed 
empirically. The generated implied volatility shapes have the realistic property that they 
flatten out as time to maturity lengthens. We are also able to generate implied risk aversions 
that are in line with empirical studies, such as Jackwerth (2000). That is, we are able to 
produce both a smile pattern and negative values.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                            
1 Following  Aït‐Sahalia  and  Lo  (2000),  we  calculate  the  implied  pricing  kernel  at  time  0  as 

0, ( ) / ( )rT
T T Te q S p Sϕ −= . 
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Figure 1: The implied volatility at time 0 as a function of the strike price (K), for various 
maturities, given that the probability of a low growth rate is 90% (v=0.9). The values of the 
other inputs are: S(0)=100, β=0.05, γ=3, θ₁=0.02, θ₂=0.03. The true volatility is constant at 
12%. 
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Figure 2: The implied volatility at time 0 as a function of the strike price (K), for various 
maturities, given that the probability of a low growth rate is 50% (v=0.5). The values of the 
other inputs are: S(0)=100, β=0.05, γ=3, θ₁=0.02, θ₂=0.03. The true volatility is constant at 
12%. 
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Figure 3: The implied volatility at time 0 as a function of the strike price (K), for various 
maturities, given that the probability of a low growth rate is 10% (v=0.1). The values of the 
other inputs are: S(0)=100, β=0.05, γ=3, θ₁=0.02, θ₂=0.03. The true volatility is constant at 
12%. 
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Figure 4: Implied and actual absolute risk aversion as a function of cash price (ST). The 
values of the inputs are: S(0)=100, β=0.05, γ=3, θ₁=0.02, θ₂=0.03, v=0.9, T=1/4, σD=0.12. 
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Figure 5: The implied pricing kernel as a function of cash price (ST). The values of the inputs 
are: S(0)=100, β=0.05, γ=3, θ₁=0.02, θ₂=0.03, v=0.9, T=1/4, σD =0.12. 
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Figure 6: Implied and actual absolute risk aversion as a function of cash price (ST), given that 
the econometrician's estimate is v̂ =0.95. The values of the inputs are: S(0)=100, β=0.05, γ=3, 
θ₁=0.02, θ₂=0.03, v=0.9, T=1/4, σD =0.12. 


