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Abstract 

In this paper, the tests of Kapetanios, Shin, and Snell (2003) and Bec, Ben Salem, and Carrasco (2004), which are 
designed to detect nonstationarity verses globally stationary exponential smooth transition autoregressive (ESTAR) 
nonlinearity, are extended to allow for a delay parameter, d, that is greater than one. Based on Monte Carlo 
simulations, it is shown that when the true delay parameter is greater than one, using the test with the correct value of 
d improves power almost uniformly compared to constraining the delay parameter to be unity. Using the tests when 
the delay parameter is not known and must be estimated is also addressed.
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1 Introduction

Using nonlinear time series models has become increasingly popular with data, such as
real exchange rates and real interest rates, where the presence of a unit root cannot be
rejected using conventional linear unit root tests.1 This has made testing for the presence
of nonlinear mean reversion against nonstationarity an important topic of research. Papers
that develop such tests include Kapetanios, Shin, and Snell (2003), hereafter KSS, and Bec,
Ben Salem, and Carrasco (2004), hereafter BBC. These two tests are based upon Taylor
approximations of smooth transition autoregressive (STAR) models. STAR models which
are used to describe nonlinear mean reversion are almost always specified as being “self-
exciting.” This implies that the transition variable, which controls the degree of transition
from one regime to another, is a lagged dependent variable with lag or delay, d.

The delay parameter measures the time it takes for the adjustment process to begin that
will tend to restore an economic variable to its long run equilibrium. The tests of KSS and
BBC are limited by the fact that the delay parameter is assumed to be unity. To understand
the practical importance of allowing for d > 1 it is instructive to focus on perhaps the most
popular application of this type of nonlinear mean reversion, the study of real exchange
rates. In the case of yearly real exchange rate data, a situation where the value of d is very
large would be unlikely. On the other hand using monthly real exchange rate data, d > 1
is a distinct possibility. Baum et al. (2001), while studying nonlinear mean reversion in
deviations from PPP, find evidence of delay parameters up to 12 months for many country
pairs. Other examples of empirical evidence of delay parameters that are not one include
Sarantis (1999) who finds evidence of d > 1 while using a STAR model to study real effective
exchange rates. Also, Taylor, van Dijk, Franses, and Lucas (2000) find evidence of d > 1
when using a STAR model to study mispricing of futures and spot prices in a UK stock
index where the data frequency is measured in minutes.

The main contribution of this paper is the generalization of the two tests of KSS and
BBC to allow d to be any positive integer. It is shown that the asymptotic distributions of
both test statistics is identical to the case when d = 1. Based on Monte Carlo simulations,
it is also shown that when the true delay parameter is greater than one, using the test with
the correct value of d improves power in almost all cases studied compared to using the
constraint, d = 1. Following Hansen (1997), the theory developed in this paper is based
upon the assumption that d is known with certainty. Suggestions for practical use of the
test when d is unknown and must be estimated are also included.

The remainder of this paper is as follows: Section 2 describes the STAR model and
associated tests of nonlinearity in the presence of possible nonstationarity. The asymptotic
distribution of the generalized tests are also derived. Section 3 focuses on the small sample

1See Baum, Barkoulas, and Caglayan (2001), Kapetanios et al. (2003), Michael, Nobay, and Peel (1997),
Sarno, Taylor, and Chowdhury (2004), Taylor, Peel, and Sarno (2001), Taylor and Peel (2000)



properties of the generalized tests. Section 4 contains suggestions for the use of the test
when d is unknown. Section 5 concludes the paper.

2 Testing for the presence of a globally stationary ES-

TAR process against the null of a unit root

2.1 STAR model and Linearity tests

A general two regime smooth transition autoregressive (STAR) model can be expressed in
the following manner:

yt = (α0 + α1yt−1 + . . . + αpyt−p)

+ [(β0 − α0) + (β1 − α1)yt−1 + . . . + (βp − αp)yp]R(zt, θ) + εt. (1)

Whether the time series process follows an AR(p) model parameterized by α = (α0, α1, . . . , αp)
′,

β = (β0, β1, . . . , βp)
′, or some convex combination of the two is governed by the transition

function R(·), which is itself a function of some transition variable zt and a set of parameters
θ. In the smooth transition model, R(zt, θ) is a smooth function bounded between zero and
one, R : R → [0, 1]. The value of the transition function determines the proportion of each
regime present in the dynamics of the process given the value of the transition variable.
There are two popular transition functions used in practice: the logistic function,

R(zt; θ) =
1

1 + exp[−γ(zt − c)]
, (2)

and exponential function,

R(zt; θ) = 1 − exp[−γ2(zt − c)2]. (3)

A STAR model with transition function (2) is known as an LSTAR model, and a STAR
model with transition function (3) is known as an ESTAR model. In both cases, larger
values of γ are associated with faster transitions. An important sub-class of STAR models
are the self-exciting STAR processes. A transition model is self-exciting if the transition
variable is a lagged dependent variable, zt = yt−d. The conditions for geometric ergodicity
and associated asymptotic stationarity of the ESTAR model, which this paper will focus on,
are discussed in Kapetanios, Shin, and Snell (2003).

The concept of testing linearity in the STAR framework is complicated by the fact that
there are unidentified nuisance parameters under the null hypothesis of linearity. This can
be seen in one of two ways. If the model is linear then either the parameter governing the
rate of transition, γ, is zero or there is no difference between the autoregressive dynamics



between regimes, α = β. If the former is true then β is unidentified because the process
always follows the autoregressive process parameterized by α. On the other hand, if there is
no difference between regimes then different values γ will result in an identical model.

To deal with the problem of nuisance parameters in the STAR framework, Saikkonen
and Luukkonen (1988) propose replacing the transition function with a second order Taylor
series approximation around γ = 0. van Dijk, Teräsvirta, and Franses (2002) explain that,
given this approximation, the error in the Taylor series approximation is then a part of the
regression error term. Under the null, the Taylor approximation error would be zero, and
as a result the properties of the error term would not be affected. The test of nonlinearity
would then simply be a test that the coefficients on the variable affected by the Taylor
approximation are zero. Specifically, let

R(zt; θ) = δ0 + δ1zt + δ2z
2
t + T (zt; θ) (4)

be the Taylor approximation with T (zt; θ) as the Taylor remainder term. Testing linearity
is then based upon the auxiliary regression

yt = φ′
0xt + φ′

1xtzt + φ′
2xtz

2
t + ε∗t , (5)

where xt = (1, yt−1, . . . , yt−p) and ε∗t = εt + T (yt−1; θ)(β − α)xt. The linearity test can then
be stated as H0 : φ1 = φ2 = 0 against the alternative that H1 : φ1 6= 0 or φ2 6= 0.

2.2 Testing for ESTAR nonlinearity versus a unit root

The tests of KSS and BBC, which test for the presence of nonlinear mean reversion against
the null hypothesis of a unit root, are based upon the Dickey-Fuller representation of the
Taylor expansion used in the previously discussed linearity test proposed by Saikkonen and
Luukkonen (1988) and discussed further in van Dijk et al. (2002). Specifically, the model
employed is given by the following:

∆yt =

r2
∑

r=r1

δryt−1y
r
t−d +

p
∑

j=1

αj∆yt−j + εt, (6)

where εt ∼ i.i.d(0, σ2). The tests are based upon the statistical significance of the parameters
(δr1

, . . . , δr2
). KSS set r1 = r2 = 2 and derive the distribution of the t-statistic testing δ2 = 0

against the null hypothesis of δ2 < 0 when the true data generating process (DGP) follows
a unit root and d = 1:

tNL = δ̂2/s.e.(δ̂2). (7)

BBC set r1 = 1, r2 = 2 and derive the distribution of the Wald statistic, FNL, testing
δ1 = δ2 = 0 against the null of δ1 6= 0 or δ1 6= 0 when the actual DGP is a unit root and
d = 1. The distributions of both test statistics are free of nuisance parameters. The proofs
of the following theorems are given in the appendix.



Theorem 1. Under the null of a unit root, for d ∈ {2, 3, 4, . . .} and p ∈ {0, 1, 2, . . .}, the

tNL statistic has the following asymptotic distribution,

tNL

D
→

∫ 1

0
W (r)3dW (r)

√

∫ 1

0
W (r)6dr

where W (r) is the standard Brownian motion.

Theorem 2. Under the null of a unit root, for d ∈ {2, 3, 4, . . .} and p ∈ {0, 1, 2, . . .}, the

FNL statistic has the following asymptotic distribution,

FNL

D
→ h′Q−1h

where Q =

(

∫ 1

0
W (r)4dr

∫ 1

0
W (r)5dr

∫ 1

0
W (r)5dr

∫ 1

0
W (r)6dr

)

, h =

(

∫ 1

0
W (r)2dW (r)

∫ 1

0
W (r)3dW (r)

)

and W (r) is the stan-

dard Brownian motion.

The distributions of both tNL and FNL for d > 1 are the same as the case when d = 1
(see KSS and BBC). This is convenient because the same asymptotical critical values can be
used regardless of the value of d. KSS note that to accommodate processes with non-zero
means and/or time trends, it may be necessary to de-mean and/or de-trend the data prior
to calculating the appropriate test statistic. In each case the asymptotic distribution of both
test statistics will be the same except that standard Brownian motion, W (r), will be replaced
by de-meaned and/or de-trended standard Brownian motion. For brevity and because the
non-zero mean case is perhaps the most common case encountered empirically when using
an ESTAR model, only the de-meaned case will be studied in this paper.

3 Small sample properties

Following KSS, the size properties of the tNL and FNL statistics are studied by using the
following DGP:

yt = yt−1 + εt with εt = ρεt−1 + ut, (8)

where ρ = {0, 0.5} and ut follows the standard normal distribution. Each statistic was
calculated based on a sample size of T = {50, 100, 200} in each of 50,000 iterations. The size
properties were studied for d = {1, 2, 6, 12}. When ρ = 0.5, the model in (6) was estimated
with p = 1. The nominal size was set to 5%.2 The results in Table 1 show that the size for
both tests is close to the nominal level for all values of d.

2Asymptotical critical values were not supplied in BBC. The critical value was calculated using stochastic
simulations with T=1000 and 50,000 replications. The 5% critical value produced was 10.13.



Also following KSS, the small sample power properties are based upon the following
ESTAR DGP:

yt = yt−1 + γ[1 − exp(−θy2
t−d)]yt−1 + εt (9)

with εt ∼ N(0, 1), γ = {−1.5,−1,−0.5,−0.1}, and θ = {0.01, 0.05, 0.1, 1}. In particular, to
gauge the importance of not restricting d = 1, we set d = {1, 2, 6, 12} and calculate the power
for each test statistic with the correct value of d and with d = 1. The power simulations are
based upon 50,000 iterations.

The results of the power simulations are given in Tables 2 and 3. As expected, in almost
all of the cases presented in the Monte Carlo simulations, when the correct value of d was
used, the tests were more powerful. The few exceptions, which are in bold, occurred mainly
when the amount of nonlinearity was extreme, θ = 1, and the difference between regimes
was small, γ = −0.1. Simulations appear to indicate that the cause for the power loss in
these cases stems from the fact that when there is a large amount of nonlinearity and there
is little mean reversion in the outer regime, the Taylor approximation does a relatively poor
job at approximating the relevant portions of the transition function transition function.

With less mean reversion the variance of the entire process is larger. This causes the data
to be spread out over a larger portion of the transition function. Given that there is already
a large degree of nonlinearity, this means that the parabolic Taylor approximation is trying
to fit a transition function which has a value of one for a large portion the data and then
drops sharply to zero near the mean of the process. This implies that the value of T (zt; θ)
in (4) is large compared with a situation when the transition function is more parabolic in
shape.

Figures 1 and 2 plot two transition functions along with an estimate of the respective
distribution of the data produced by the ESTAR model. The data distribution was estimated
by simulating data (100,000 observations) using model (9) with a standard normal error term
and then using kernel density estimation with a bandwidth that is optimal for estimation
normal distributions. Figure 1 illustrates a case with a high degree of nonlinearity and little
mean reversion. It is clear that over the portion of the transition function where the data is
found, the parabolic Taylor approximation would result in a large amount of error. Figure 2
is parameterized by a low degree of nonlinearity and a greater degree of mean reversion. In
this case, over the spread of the data, the Taylor approximation would result in a good fit.

The fact that the error in the transition function approximation enters the error term,
as in (5), implies that this issue can be viewed as a kind of omitted variable bias. The
potential correlation between the excluded Taylor approximation error, T (yt−d; θ), and the
included variable yt−1y

2
t−d will tend to bias the estimate of δ2 in model (6). With d > 1 the

correlation will tend to be greater when the correct term, yt−1y
2
t−d, is included compared

with the case when the delay parameter is constraint to be unity and y3
t−1 is included in

the regression model. This greater correlation, when the correct delay parameter is used,
appears to cause the estimate of δ2 to become less significant which in turn lowers the power



of the test in these cases. As a result, in practice, care should be taken if it appears that the
Taylor approximation will do a poor job at approximating the true transition function.

It is also important to note that there appears to be only small differences between the
power of the tNL and the FNL statistic. In other words, it appears the addition of the extra
term in the Taylor expansion adds little to the ability to reject the presence of nonstationarity
when the true DGP is ESTAR. Among all of the cases in the Monte Carlo experiments in
the paper, when using the true value of d, the average difference in power between tNL and
FNL was less than 0.01.

4 Use of the tests when d is unknown

In most practical situations the value of d will not be known and must be estimated. To
understand the implications of using an estimated value of the delay parameter while testing
for nonlinearity, Monte Carl simulations were constructed to assess the impact on the size
and power of the tests. The delay parameter was chosen from d = (1, ..., 15) such that sum
of squared errors from the test regression in (6) is minimized. Given that maximizing the
fit of the regression is equivalent to maximizing the t or F stat, size distortions should be
expected.

Table 4 contains the results from 50,000 simulations following similar procedures as those
outlined in the previous section. Both tests are heavily over-sized. The table also contains the
critical value that yields the correct size of 5%. These critical values were used to calculate
the size adjusted power of the two tests in Tables 2 - 3. For d = 1, 2 there is a meaningful
decrease in the power of both tests when the estimated value of the delay parameter is used.
This result is to be expected given that the test should be more powerful in these cases if
the correct delay parameter is used or if d is constrained to be unity. On the other hand for
the cases when d = 6, 12 the power of the test using the estimated delay parameter is close
to the power when the correct delay is employed.

These results suggest that in the ideal case, where d is known, then the correct value
should be used so that the power if the test is maximized. In the case where the value of the
delay parameter is unknown, there are two choices that encompass virtually all of empirical
use of the STAR model. This first choice is to constrain the the value of d to be one and the
second is to estimate the delay parameter using some optimization criterion. The results of
these simulations suggest that there will be a decrease in power if either the delay parameter
is constrained to be one and it is actually large or if the delay parameter is estimated and it
is close to one. Given this, the practitioner’s best option is to be guided by economic theory
as to whether the true value of the delay parameter is large or small. If there is strong
evidence that the delay parameter is large then the best option is to estimate the value of
the delay parameter and use a size-adjusted test statistic to test for nonlinearity. If it is



very unlikely that the delay parameter is larger than one, then the delay parameter should
be constrained to be one and the regular test statistic should be used.

5 Conclusion

The paper generalizes two previously developed tests for detecting nonlinear mean reversion
in a STAR framework against the presence of nonstationarity by allowing a delay parameter
greater than one. It was shown that the asymptotic distribution of the test statistics remains
unchanged. Also, it was also shown that when the delay parameter of the data generating
process is greater than one, using the test with the correct value of d improves power in
almost all cases studied compared to constraining the delay parameter to unity. Practical
suggestions for using the test in the case when the delay parameter must be estimated were
also given.
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A Appendix: Proofs

These derivations and notation closely follow those found in KSS and BBC.

A.1 Distribution of tNL for d = {2, 3, 4, . . .}

The relevant statistic for r1 = r2 = 2 in (6), as in KSS, is the t-statistic for δ2 = 0 against
δ2 < 0,

tNL = δ̂2/s.e.(δ̂2). (10)

A.1.1 Case 1: p = 0

Under the null, the process follows a unit root, so ∆yt = εt. Thus

tNL =

∑T
t=1 yt−1y

2
t−dεt

√

σ̂2
∑T

t=1(yt−1y2
t−d)

2

(11)

Substituting yt−1 = yt−d +
∑d−1

i=1 εt−i for d > 1 yields

tNL =

∑T
t=1(yt−d +

∑d−1

i=1 εt−i)y
2
t−dεt

√

σ̂2
∑T

t=1((yt−d +
∑d−1

i=1 εt−i)y2
t−d)

2

(12)

=

∑T
t=1(y

3
t−dεt +

∑d−1

i=1 εt−iεty
2
t−d)

√

σ̂2
∑T

t=1(y
3
t−d +

∑d−1

i=1 εt−iy2
t−d)

2

(13)

=

∑T
t=1(y

3
t−dεt +

∑d−1

i=1 εt−iεty
2
t−d)

√

σ̂2
∑T

t=1(y
6
t−d + 2

∑d−1

i=1 εt−iy5
t−d + y4

t−d(
∑d−1

i=1 εt−i)2)
(14)

Focusing on the simplest case, set d = 2

tNL =

∑T
t=1(εty

3
t−2 + εt−1εty

2
t−2)

√

σ̂2
∑T

t=1(y
6
t−2 + 2εt−1y5

t−2 + ε2
t−1y

4
t−2)

(15)



It is straightforward to show that σ̂2 P
→ σ2. Noting that the asymptotics of

∑T
t=1 εty

k
t−d,

for some positive integer k, will be the same as
∑T

t=1 εty
k
t−1 by the i.i.d. nature of εt, Theorem

3.1 of Park and Phillips (2001) can be applied to get the following results:

T−2

T
∑

t=1

εty
3
t−2

D
→ σ4

∫ 1

0

W (r)3dW (r) (16)

T−4

T
∑

t=1

y6
t−2

D
→ σ6

∫ 1

0

W (r)6dr (17)

T−3

T
∑

t=1

εt−1y
5
t−2

D
→ σ6

∫ 1

0

W (r)5dW (r) (18)

The remaining terms to consider are
∑T

t=1 εt−1εty
2
t−2 and

∑T
t=1 ε2

t−1y
4
t−2. First note that

ut = εt−1εt is a martingale difference sequence and is uncorrelated with yt−2. Again using
Theorem 3.1 of Park and Phillips (2001), we get the following:

T−3/2

T
∑

t=1

uty
2
t−2

D
→ σ4

∫ 1

0

W (r)2dU(r) (19)

The remaining term can be expressed as

T
∑

t=1

ε2
t−1y

4
t−2 =

T
∑

t=1

(ε2
t−1 − σ2)y4

t−2 +

T
∑

t=1

σ2y4
t−2 (20)

Note that vt = ε2
t−1 − σ2 is a martingale difference sequence. Thus using the same theorem

we get the following:

T−5/2

T
∑

t=1

vty
4
t−2

D
→ σ6

∫ 1

0

W (r)4dV (r) (21)

T−3

T
∑

t=1

σ2y4
t−2

D
→ σ6

∫ 1

0

W (r)4dr (22)

Thus with d = 2



tNL
D
→

∫ 1

0
W (r)3dW (r)

√

∫ 1

0
W (r)6dr

(23)

For d > 2 the preceding arguments are sufficient to show that

tNL
D
→

∫ 1

0
W (r)3dW (r)

√

∫ 1

0
W (r)6dr

(24)

This is because there are only two terms in (6) who asymptotics will change with d > 2.
They are

T
∑

t=1

d−1
∑

i=1

εt−iεty
2
t−d (25)

in the numerator, and
T
∑

t=1

y2
t−d(

d−1
∑

i=1

εt−i)
2 (26)

in the denominator.

Each term in (25) and the cross product terms in (26),
∑T

t=1 y2
t−d(

∑d−1

i=1 εt−i(
∑d−1

j=1,j 6=i εt−j)),

behave the same as (19). The rest of the (d − 1) terms in (26),
∑T

t=1 y2
t−d

∑d−1

i=1 ε2
t−i, will

behave the same as (20). Note that the distribution of the tNL statistic does not depend on
σ or any other nuisance parameters and has the same distribution for d=1. �

A.1.2 Case 2: p > 0

Follows directly from the Proof of Theorem 2.2 of KSS.

A.2 Distribution of FNL for d = {2, 3, 4, . . .}

For r1 = 1, r2 = 2 in (6), as in BBC, the relevant test statistic is the Wald test statistic for
δ1 = δ2 = 0 against δ1 6= 0 or δ2 6= 0. Adopting the same reparametrization as BBC and
KSS, let y

j
d = (y0y

j
−d, . . . , yT−1y

j
T−d)

′, ∆y−j = (∆y1−j, . . . , ∆yT−j)
′, Z = (∆y−1, . . . ,∆y−1).

Define the T × T idempotent matrix ZT = IT - Z(Z′Z)−1Z′, and ε = (ε1, . . . , εT )′. Model
(6) can be rewritten as

∆y =

p−1
∑

j−1

αj∆y−j + δ1y
1
d + δ2y

2
d + ε,



which can also be expressed as

MT ∆y = δ1MTy1
d + δ2MTy2

d + MT ε.

Let θ̂ = (δ̂r1
, δ̂r2

)′, X = [y1
d y2

d], and

ΓT =

[

T 3/2 0
0 T 2

]

.

The Wald test statistic we are concerned with is

FNL = θ̂′
[

σ̂2(X ′MT X)−1
]−1

θ̂. (27)

To establish the limiting distribution, note the following:

ΓT θ̂ = Γ−1
T θ + (Γ−1

T (X ′MT X)Γ−1
T )−1Γ−1

T X ′MT ε,

Γ−1
T X ′MT ε =

(

y1
′

d MT ε

T−3/2

y2
′

d MT ε

T−2

)

=

(

y1
′

d ε

T−3/2

y2
′

d ε

T−2

)

+ op(1) =

( ∑T
t=1

yt−1yt−dεt

T 3/2
∑T

t=1
yt−1y2

t−dεt

T 2

)

+ op(1) (28)

D
→ σ

(

η2
∫ 1

0
W (r)2dW (r)

η3
∫ 1

0
W (r)3dW (r)

)

≡ σ

[

η2 0
0 η3

]

h,

where η = σ/(1 − α1 − . . . − αp). The limiting distribution for the sums in (28) can be
determined using the same arguments to derive the distributions for the numerator in (11).

Also,

Γ−1
T (X ′MT X)−1Γ−1

T =

(

y1
′

d MT y1
′

d

T 3/2

y1
′

d MT y2
′

d

T 7/2

y2
′

d MT y1
′

d

T 7/2

y2
′

d MT y2
′

d

T 4

)

=

(

y1
′

d y1
′

d

T 3/2

y1
′

d y2
′

d

T 7/2

y2
′

d y1
′

d

T 7/2

y2
′

d y2
′

d

T 4

)

+ op(1)

=

(
∑T

t=1
y2

t−1
y2

t−d

T 3

∑T
t=1

y2

t−1
y3

t−d

T 7/2
∑T

t=1
y2

t−1
y3

t−d

T 7/2

∑T
t=1

y2

t−1
y4

t−d

T 4

)

+ op(1) (29)

D
→

(

η4
∫ 1

0
W (r)4dr η5

∫ 1

0
W (r)5dr

η5
∫ 1

0
W (r)5dr η6

∫ 1

0
W (r)6dr

)

≡

[

η2 0
0 η3

]

Q

[

η2 0
0 η3

]

The limiting distribution for the sums in (29) can be determined using the same arguments
to derive the distributions for the denominator in (11).



Thus the Wald test statistic in (27) is

FNL = θ̂′
[

σ̂2(X ′MT X)−1
]−1

θ̂

= (Γ−1
T θ̂)′

[

Γ−1
T (X ′MT X)−1Γ−1

T

]−1
Γ−1

T θ̂/σ̂2

D
→ (Q−1h)′Q−1(Q−1h)

= h′Q−1h

Note that the limiting distribution does not depend on σ or any other nuisance parameters
and is the same as the distribution for d=1. �



Table 1: Size properties of tNL and FNL

d = 1 d = 2 d = 6 d = 12
tNL FNL tNL FNL tNL FNL tNL FNL

ρ = 0
T = 50 0.050 0.045 0.048 0.048 0.055 0.058 0.050 0.064
T = 100 0.050 0.048 0.048 0.045 0.047 0.051 0.051 0.053
T = 200 0.050 0.049 0.047 0.045 0.043 0.046 0.045 0.048

ρ = 0.5
T = 50 0.061 0.063 0.051 0.049 0.059 0.060 0.053 0.070
T = 100 0.055 0.055 0.047 0.045 0.048 0.050 0.053 0.056
T = 200 0.054 0.052 0.048 0.047 0.042 0.044 0.047 0.049



Table 2: Power properties of tNL

θ = 0.01 0.05 0.10 1.00

d̄ = d 1 d̂ d 1 d̂ d 1 d̂ d 1 d̂

d = 1

γ = −1.5

T = 50 0.256 - 0.129 0.825 - 0.385 0.967 - 0.611 1.000 - 0.965

T = 100 0.690 - 0.263 0.998 - 0.820 1.000 - 0.966 1.000 - 1.000

T = 200 0.992 - 0.739 1.000 - 0.999 1.000 - 1.000 1.000 - 1.000

γ = −1.0

T = 50 0.178 - 0.108 0.622 - 0.257 0.855 - 0.407 0.996 - 0.853

T = 100 0.488 - 0.194 0.980 - 0.620 0.999 - 0.852 1.000 - 0.998

T = 200 0.955 - 0.570 1.000 - 0.987 1.000 - 0.999 1.000 - 1.000

γ = −0.5

T = 50 0.114 - 0.089 0.305 - 0.147 0.473 - 0.205 0.798 - 0.465

T = 100 0.242 - 0.130 0.778 - 0.321 0.934 - 0.490 0.992 - 0.872

T = 200 0.725 - 0.342 0.997 - 0.831 1.000 - 0.957 1.000 - 0.999

γ = −0.1

T = 50 0.068 - 0.065 0.084 - 0.079 0.090 - 0.085 0.115 - 0.101

T = 100 0.089 - 0.080 0.148 - 0.107 0.189 - 0.128 0.257 - 0.179

T = 200 0.159 - 0.135 0.428 - 0.256 0.549 - 0.336 0.609 - 0.461

d = 2

γ = −1.5

T = 50 0.290 0.131 0.125 0.775 0.492 0.349 0.911 0.757 0.525 0.993 0.993 0.899

T = 100 0.685 0.466 0.286 0.991 0.980 0.792 0.999 0.999 0.936 1.000 1.000 0.998

T = 200 0.987 0.977 0.765 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

γ = −1.0

T = 50 0.206 0.105 0.104 0.598 0.304 0.236 0.780 0.522 0.352 0.948 0.945 0.717

T = 100 0.504 0.301 0.204 0.955 0.899 0.606 0.993 0.986 0.802 0.999 1.000 0.983

T = 200 0.944 0.903 0.603 1.000 1.000 0.981 1.000 1.000 0.998 1.000 1.000 1.000

γ = −0.5

T = 50 0.124 0.080 0.080 0.313 0.150 0.137 0.450 0.234 0.180 0.629 0.599 0.355

T = 100 0.263 0.162 0.135 0.743 0.565 0.321 0.886 0.791 0.458 0.958 0.975 0.766

T = 200 0.714 0.600 0.373 0.994 0.989 0.819 0.999 0.999 0.938 1.000 1.000 0.996

γ = −0.1

T = 50 0.066 0.062 0.063 0.086 0.072 0.072 0.092 0.080 0.079 0.104 0.103 0.092

T = 100 0.087 0.078 0.081 0.145 0.120 0.107 0.181 0.150 0.121 0.218 0.236 0.167

T = 200 0.163 0.140 0.142 0.413 0.355 0.262 0.509 0.474 0.331 0.552 0.606 0.447



θ = 0.01 0.05 0.10 1.00

d̄ = d 1 d̂ d 1 d̂ d 1 d̂ d 1 d̂

d = 6

γ = −1.5

T = 50 0.253 0.082 0.129 0.538 0.189 0.312 0.696 0.317 0.447 0.962 0.885 0.849

T = 100 0.616 0.142 0.384 0.934 0.410 0.755 0.980 0.613 0.876 0.999 0.982 0.994

T = 200 0.959 0.482 0.841 1.000 0.874 0.991 1.000 0.951 0.998 1.000 0.999 1.000

γ = −1.0

T = 50 0.197 0.074 0.104 0.416 0.133 0.220 0.532 0.215 0.305 0.824 0.725 0.636

T = 100 0.491 0.116 0.291 0.851 0.296 0.621 0.930 0.465 0.745 0.988 0.940 0.950

T = 200 0.899 0.375 0.738 0.998 0.780 0.967 1.000 0.894 0.991 1.000 0.996 1.000

γ = −0.5

T = 50 0.136 0.066 0.081 0.253 0.094 0.133 0.312 0.124 0.163 0.423 0.389 0.303

T = 100 0.297 0.090 0.173 0.620 0.177 0.389 0.730 0.267 0.479 0.828 0.731 0.673

T = 200 0.687 0.233 0.512 0.965 0.572 0.852 0.989 0.725 0.915 0.992 0.966 0.975

γ = −0.1

T = 50 0.072 0.062 0.059 0.087 0.065 0.066 0.088 0.073 0.071 0.089 0.098 0.085

T = 100 0.094 0.066 0.083 0.144 0.089 0.109 0.160 0.102 0.124 0.159 0.182 0.155

T = 200 0.180 0.099 0.159 0.361 0.184 0.295 0.416 0.260 0.345 0.396 0.482 0.426

d = 12

γ = −1.5

T = 50 0.133 0.091 0.111 0.413 0.222 0.328 0.614 0.350 0.517 0.953 0.878 0.924

T = 100 0.450 0.128 0.380 0.855 0.357 0.800 0.954 0.553 0.931 0.999 0.979 0.998

T = 200 0.894 0.254 0.883 0.997 0.613 0.997 1.000 0.811 1.000 1.000 0.998 1.000

γ = −1.0

T = 50 0.102 0.082 0.089 0.274 0.164 0.210 0.417 0.249 0.329 0.811 0.734 0.746

T = 100 0.351 0.107 0.288 0.707 0.268 0.640 0.847 0.414 0.802 0.986 0.934 0.980

T = 200 0.806 0.198 0.790 0.982 0.491 0.983 0.996 0.688 0.996 1.000 0.991 1.000

γ = −0.5

T = 50 0.073 0.070 0.071 0.140 0.106 0.119 0.196 0.147 0.157 0.408 0.423 0.355

T = 100 0.234 0.083 0.188 0.449 0.160 0.379 0.558 0.247 0.488 0.787 0.725 0.762

T = 200 0.610 0.138 0.583 0.893 0.327 0.892 0.946 0.470 0.947 0.984 0.939 0.989

γ = −0.1

T = 50 0.056 0.062 0.056 0.061 0.071 0.064 0.064 0.078 0.068 0.071 0.115 0.084

T = 100 0.093 0.064 0.079 0.125 0.082 0.110 0.133 0.099 0.120 0.131 0.182 0.152

T = 200 0.186 0.084 0.181 0.319 0.134 0.310 0.344 0.177 0.356 0.313 0.407 0.425
Notes: d̄ is the value of the delay parameter used to calculated tNL, and d is the true value of the delay parameter used

in the DGP. The cases where the test is more powerful when d̄ = 1 verses d̄ = d are in bold. d̂ refers to the case where the

delay parameter is chosen from d = 1, ...,15 through the estimation process.



Table 3: Power properties of FNL

θ = 0.01 0.05 0.10 1.00

d̄ = d 1 d̂ d 1 d̂ d 1 d̂ d 1 d̂

d = 1

γ = −1.5

T = 50 0.250 - 0.378 0.821 - 0.684 0.966 - 0.843 1.000 - 0.992

T = 100 0.715 - 0.511 0.999 - 0.934 1.000 - 0.991 1.000 - 1.000

T = 200 0.998 - 0.863 1.000 - 1.000 1.000 - 1.000 1.000 - 1.000

γ = −1.0

T = 50 0.166 - 0.342 0.614 - 0.558 0.849 - 0.710 0.996 - 0.963

T = 100 0.501 - 0.423 0.984 - 0.827 0.999 - 0.949 1.000 - 1.000

T = 200 0.979 - 0.737 1.000 - 0.995 1.000 - 1.000 1.000 - 1.000

γ = −0.5

T = 50 0.102 - 0.295 0.288 - 0.410 0.452 - 0.500 0.759 - 0.770

T = 100 0.236 - 0.328 0.796 - 0.579 0.941 - 0.736 0.993 - 0.963

T = 200 0.767 - 0.526 0.999 - 0.916 1.000 - 0.982 1.000 - 1.000

γ = −0.1

T = 50 0.059 - 0.252 0.071 - 0.280 0.080 - 0.296 0.098 - 0.333

T = 100 0.081 - 0.236 0.139 - 0.296 0.174 - 0.332 0.234 - 0.409

T = 200 0.155 - 0.268 0.423 - 0.420 0.541 - 0.509 0.600 - 0.636

d = 2

γ = −1.5

T = 50 0.296 0.110 0.370 0.790 0.422 0.642 0.919 0.694 0.782 0.993 0.991 0.973

T = 100 0.712 0.420 0.524 0.993 0.978 0.913 0.999 0.999 0.979 1.000 1.000 1.000

T = 200 0.993 0.986 0.873 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

γ = −1.0

T = 50 0.205 0.088 0.335 0.610 0.256 0.528 0.791 0.459 0.653 0.949 0.927 0.909

T = 100 0.528 0.273 0.438 0.964 0.889 0.800 0.994 0.984 0.923 1.000 1.000 0.997

T = 200 0.963 0.918 0.758 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000 1.000

γ = −0.5

T = 50 0.120 0.071 0.293 0.319 0.127 0.390 0.451 0.192 0.460 0.613 0.540 0.675

T = 100 0.270 0.145 0.338 0.760 0.521 0.570 0.894 0.757 0.697 0.953 0.972 0.918

T = 200 0.754 0.597 0.555 0.997 0.994 0.909 1.000 1.000 0.973 1.000 1.000 0.999

γ = −0.1

T = 50 0.065 0.056 0.248 0.080 0.062 0.272 0.089 0.069 0.282 0.099 0.089 0.314

T = 100 0.082 0.071 0.240 0.141 0.106 0.293 0.174 0.133 0.317 0.205 0.210 0.392

T = 200 0.159 0.127 0.275 0.408 0.332 0.435 0.510 0.456 0.505 0.540 0.594 0.619



θ = 0.01 0.05 0.10 1.00

d̄ = d 1 d̂ d 1 d̂ d 1 d̂ d 1 d̂

d = 6

γ = −1.5

T = 50 0.264 0.084 0.356 0.552 0.194 0.561 0.716 0.328 0.686 0.964 0.904 0.956

T = 100 0.638 0.132 0.601 0.941 0.396 0.872 0.983 0.610 0.947 0.999 0.991 0.998

T = 200 0.972 0.431 0.916 1.000 0.858 0.997 1.000 0.954 1.000 1.000 1.000 1.000

γ = −1.0

T = 50 0.196 0.078 0.320 0.425 0.137 0.475 0.543 0.215 0.571 0.832 0.737 0.862

T = 100 0.515 0.106 0.518 0.863 0.280 0.779 0.937 0.446 0.869 0.988 0.956 0.986

T = 200 0.924 0.330 0.847 0.999 0.746 0.987 1.000 0.888 0.997 1.000 0.999 1.000

γ = −0.5

T = 50 0.133 0.070 0.282 0.258 0.095 0.367 0.319 0.125 0.416 0.417 0.374 0.613

T = 100 0.311 0.087 0.393 0.646 0.165 0.603 0.745 0.245 0.683 0.813 0.736 0.856

T = 200 0.721 0.199 0.683 0.975 0.526 0.917 0.991 0.693 0.957 0.992 0.976 0.990

γ = −0.1

T = 50 0.071 0.068 0.238 0.082 0.073 0.260 0.088 0.078 0.266 0.087 0.097 0.297

T = 100 0.094 0.067 0.247 0.148 0.081 0.301 0.166 0.098 0.322 0.158 0.170 0.368

T = 200 0.187 0.090 0.312 0.375 0.169 0.473 0.421 0.232 0.526 0.379 0.451 0.595

d = 12

γ = −1.5

T = 50 0.159 0.120 0.344 0.434 0.268 0.611 0.640 0.406 0.767 0.959 0.907 0.979

T = 100 0.464 0.143 0.633 0.858 0.404 0.921 0.957 0.604 0.977 0.999 0.991 1.000

T = 200 0.906 0.253 0.951 0.998 0.648 0.999 1.000 0.853 1.000 1.000 1.000 1.000

γ = −1.0

T = 50 0.126 0.111 0.307 0.296 0.196 0.492 0.439 0.287 0.622 0.826 0.761 0.917

T = 100 0.370 0.115 0.547 0.715 0.294 0.830 0.852 0.451 0.920 0.986 0.957 0.995

T = 200 0.828 0.200 0.905 0.986 0.508 0.993 0.996 0.721 0.999 1.000 0.998 1.000

γ = −0.5

T = 50 0.097 0.104 0.270 0.168 0.136 0.362 0.223 0.174 0.431 0.428 0.436 0.674

T = 100 0.240 0.092 0.428 0.457 0.174 0.646 0.563 0.263 0.743 0.782 0.745 0.916

T = 200 0.639 0.138 0.762 0.902 0.333 0.955 0.947 0.482 0.977 0.984 0.959 0.996

γ = −0.1

T = 50 0.070 0.105 0.231 0.076 0.108 0.254 0.081 0.111 0.262 0.084 0.141 0.301

T = 100 0.092 0.075 0.243 0.128 0.092 0.307 0.138 0.109 0.330 0.128 0.185 0.382

T = 200 0.195 0.084 0.343 0.326 0.131 0.514 0.352 0.173 0.557 0.300 0.395 0.608
Notes: d̄ is the value of the delay parameter used to calculated FNL, and d is the true value of the delay parameter used

in the DGP. The cases where the test is more powerful when d̄ = 1 verses d̄ = d are in bold. d̂ refers to the case where the

delay parameter is chosen from d = 1, ...,15 through the estimation process.



Table 4: Size properties of tNL and FNL for d̂ = 1, ..., 15

tNL FNL

Size CV0.05 Size CV0.05

ρ = 0

T = 50 0.164 -3.64 0.143 16.91

T = 100 0.152 -3.50 0.116 14.52

T = 200 0.105 -3.28 0.096 13.18

ρ = 0.5

T = 50 0.142 -3.56 0.126 16.15

T = 100 0.121 -3.38 0.094 13.77

T = 200 0.085 -3.18 0.076 12.35
Notes: CV0.05 refers to the critical value of the test which

yields no size distortions.
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Figure 1: Transition Function and Data Distribution for θ = 1, γ = −0.1
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Figure 2: Transition Function and Data Distribution for θ = 0.01, γ = −1


