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Abstract 

In investigating linear approximations to the Quadratic Almost Ideal Demand System (QUAIDS), Matsuda (2006) 
proposed a composite variable to approximate a price aggregator function. This paper provides an axiomatic 
characterization of this composite price variable.
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1. Introduction 
 
In recent times the Quadratic Almost Ideal Demand System (QUAIDS) proposed by 
Banks et al. (1997) has been the most extensively used model in the analysis of consumer 
behaviour because of its versatility and flexibility (see Matsuda 2006 and the references 
therein). As Matsuda (2006) points out, observed price and expenditure data are often 
non-stationary, and application of nonlinear systems to such data is difficult. In order to 
be able to properly handle the popular QUAIDS in the context of non-stationary data, 
Matsuda (2006) proposed a composite variable to approximate one of the price 
aggregator functions. In this paper we provide an axiomatic characterization of this 
composite price variable. 
 
 

2. QUAIDS and Linear Approximation 
 
 
The cost function underlying QUAIDS is of the form 
 

)
)()ln/1(

)(exp().(),(
pu

pbpapuC
λ−

= ,                                                                        (1)  

 
where p is the price vector of n commodities, )p(a is a homogeneous function of degree 

one in prices, given by ∑ ∑ ∑++=
= = =

n

i

n

i

n

j
jiijii plnplnpln)p(aln

1 1 1
0 2

1 δαα , with 0=∑
i

iα , 

0=∑=∑
j

ij
i

ij δδ ; )p(b and )( pλ  are homogeneous functions of degree zero in prices, 

given by ∏=
=

n

i
i

ip)p(b
1

β , with 0=∑
i

iβ ; ∑=
=

n

i
ii pln)p(

1
λλ , with 0=∑

i
iλ  and u denotes 

the level of utility.  
 
By Shephard’s lemma, the budget share functions corresponding to the cost function 
“(1)” are of the form 
 

2)
)p(a

y(ln
)p(b)p(a

ylnplnw i
ij

j
ijii

λ
βδα ++∑+= , i=1,2,…,n,             (2)                    

 
where y denotes nominal  income and i denotes item of expenditure.  
 
Linear approximations to the QUAIDS require that both a(p) and b(p) be replaced by 
composite variables, which are free of unknown parameters. Various approximations to 
a(p) in the context of the Almost Ideal demand System (AIDS) of Deaton and Muellbauer 
(1980) have been suggested in the literature (see, for example, Deaton and Muellbauer 
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1980, Moschini 1995)1. In order to approximate b(p), Matsuda (2006) proposed a 
composite variable, zP , given by the following equation: 
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where n is the number of commodities in two time periods t=0 (base period) and 
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In what follows, we provide an axiomatic characterization of zPln .3  
 
 

3. Characterization of zP  
 
Consider the class of aggregated price relatives  
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where +→× R],[],[:mi 1010 , 000 =),(mi  and im is continuous. 
 
Let us look at the following two properties of )q,p,q,p(P 0011 . 
 
Property 1: )q,p,q,p(P 0011  is homogeneous of degree zero separately in base and 
current period prices. 
 
  That is, )q,p,q,p(P 0011 λ  = )q,p,q,p(P 0011  for any scalar 0>λ . 
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1 Of these, the rnqvistoT &&  Index has been axiomatically characterized by Balk and Diewert (2001). 
 
2 Note that the approximation is a function of .,,, 1010

iiii ppww  If the base period prices are set to 1, then 
zP  is a function of current period prices only. 

 
3 It may, however, be pointed out that no optimization relating zP  to b(p) is attempted here. The linear 

approximation, which is purely for practical convenience (Matsuda 2006), is the starting point.  
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Property 2: )q,p,q,p(P 0011  is symmetric with respect to base and current period prices. 
  That is, )q,p,q,p(P 0011  = )q,p,q,p(P 1100 .           
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Theorem:  Property 1 and Property 2 hold together if and only if     
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Proof: 
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Using this successively in “(5)” for n = 2,3,…, we can show that 
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Now, this is of the form F(x,y)+F(y,x)=0, which is a special case of the general form  

F(x,y)+F(y,z)=F(x,z), with z=x,  
where F is continuous. 
 
The solution of this functional equation is given by 
   F(x,y) = g(y)-g(x)                   [see leAcz ′ 1966, page 223, Theorem 1], 
where g is continuous. 
 
Therefore, the solution in our case is )w(g)w(g)w,w(m iiiii
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It is straightforward to verify that 0
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mentioned above. This completes the proof of the theorem.                                               
 

Thus, the price aggregator )q,p,q,p(Pln 0011  is a unique (up to a scalar multiple) 
member of the class of the price aggregators with )q,p,q,p(P 0011 satisfying the 
property of homogeneity of degree zero in current period prices and symmetry with 
respect to base and current period prices. 
  
As already observed earlier, the approximation uses data from a pair of time periods. So, 
for practical application to data sets covering many time periods, one time period may be 
chosen as base (time period 0 in the formula). 
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