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Abstract 

We report in this note some results on the theoretical likelihood of Condorcet's Other Paradox in three alternative 
elections. This paradox occurs when we have a voting situation such that no Wheighted Scoring Rule (WSR) will 
select the Pairwise Majority Rule Winner as the WSR winner. We conclude from our study that actual observances of 
Condorcet's Other Paradox should be very rare events.
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1. Introduction  
 
     We consider in this note the problem of a group of n voters having to choose an 
alternative among a set of three alternatives (or candidates) A, B and C. Individual voter 
preferences on alternatives are supposed to be both complete and transitive and are 
expressed as linear preference rankings. Fig. 1.1 shows each of the six possible linear 
preference rankings that each voter might have in a three-alternative election. 
 
   A A B C B C 
   B C A A C B 
   C B C B A A 
   1n  2n  3n  4n  5n  6n  

Fig. 1.1 The six possible linear preference rankings on three candidates 

Here, ni denotes the number of voters that have the associated linear preference ranking, 

with ∑ =

6

1i in = n. A voting situation denotes any particular combination of sn'i  that sum 

to n.  Voting situations just report the in values that are associated with each possible 
individual preference ranking for a given election, without specifying the preferences of 
any individual voter. A voter preference profile, or voter profile, gives a complete list 
that shows the specific linear preference order that is held by each individual voter.  A 
voting situation can be obtained from a voter profile simply by determining the number 
of voters within the profile that have each of the possible linear preference rankings.  As 
a result, voters’ preferences are not anonymous in the case of a voter profile, but they are 
in a voting situation. 
     Let AMB denote the event that A defeats B by Pairwise Majority Rule (PMR) when 
only preferences on the pair of candidates A and B are considered in voters’ preference 
rankings. It follows from the notation adopted in Fig. 1.1 that AMB if 
[ ]653421 nnnnnn ++>++ . Then, A will be the winner by PMR, or the Pairwise Majority 
Rule Winner (PMRW) when both AMB and AMC. The PMRW is commonly referred to 
as the Condorcet Winner, since Condorcet (1785) was a very strong advocate of the 
argument that the PMRW should always be selected as the winner of an election. 
Condorcet was also the first to demonstrate that a PMRW does not always exist (it can 
occur that, for instance, AMB, BMC and CMA) and this phenomenon is known as the 
Condorcet’s Paradox. 
     In this note, we are interested in another paradox that was considered by Condorcet 
(1785) in his seminal work. This paradox is concerned with the general notion of a 
Weighted Scoring Rule (WSR).  A WSR gives some number of points to candidates 
according to their relative position within individual voter’s preference rankings.  For 
three-candidate elections, we will assume in the following that a general WSR assigns 1 
point to a candidate for each time it is most preferred in a voter’s preference ranking, λ  
points for each time it is ranked as second most preferred, and 0 point for each least 
preferred ranking.  Three well known WSR’s in voting theory are the Borda Rule (BR) 
which takes 2/1=λ , the Plurality Rule (PR) which takes 0=λ and the Negative Plurality 
Rule (NPR) which takes 1=λ .  We suppose 10 ≤≤ λ since it would not make sense to 
award more points to the middle ranked candidate in a voter’s preference ranking than to 
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the most preferred candidate in the ranking, or to award fewer points to the middle ranked 
candidate than to the least preferred candidate. Consequently, the weighted score for each 
alternative is 
   ( ) ( )4321, nnnnAScore +++= λλ  
   ( ) ( )6153 nnnn,BScore +++= λλ  
   ( ) ( )5264 nnnn,CScore +++= λλ . 
     Condorcet (1785) gives the example voting situation in Fig. 1.2 to show a 
phenomenon that Fishburn (1974) refers to as Condorcet’s Other Paradox.    
 
  A    A   B   C   B   C 
  B    C   A      A     C   B 
  C    B   C      B   A   A 
          301 =n    12 =n   293 =n  104 =n  105 =n 16 =n . 

Fig. 1.2 A voting situation showing Condorcet’s Other Paradox from Condorcet (1785) 

Condorcet notes that AMB (41-40) and AMC (61-20) in this voting situation, so that 
Candidate A is the PMRW, and then computes ( )AScore  and ( )BScore  for the general WSR 
with weights 1, λ  and 0: 

( )
( ) ).130(1029,

)1029(130,

+++=
+++=

λBScore

λAScore

λ
λ

 

In order for Candidate A to be elected by a WSR, we must have: 
( ) ( )λλ ,, BScoreAScore >  

λλ 31393931 +>+  
88 >λ  
.1>λ  

This contradicts our definition of a WSR, so that no WSR can elect the PMRW in this 
example, which is Condorcet’s Other Paradox.  Fishburn (1974) generalizes this result for 
all 3≥m , to show that there is always some voting situation with a PMRW in an m-
candidate election, such that every WSR will have at least 2−m  candidates with a greater 
score than the PMRW. Such voting situations are obviously problematic and there is a 
resulting interest in determining estimates for the likelihood that they occur. 

In the present paper, which focuses on three-alternative elections, we consider that 
Condorcet’s Other Paradox occurs when we have a voting situation such that no WSR 
with 10 ≤≤ λ  will select the PMRW as the WSR winner and our aim is to compute the 
probability of such a phenomenon. Two alternative (and common) probability models 
will be used, both of which being based on a notion of equiprobability. The first one is 
known as the Impartial Culture (IC) condition and assumes that every voter profile is 
equally likely to occur. The second one is the Impartial Anonymous Culture (IAC) 
condition which supposes that every voting situation is equally likely to occur. 
 
 

2. Probability of Condorcet’s Other Paradox 
 

     A considerable amount of research effort has been done to develop mathematical 
representations for the probability that Condorcet’s Paradox will be observed (see 
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Gehrlein, 2006). By contrast, much less attention has been paid to Condorcet’s Other 
Paradox. There has been however some earlier work done to compute the probability that 
a stronger version of this paradox will be observed under the assumption of Impartial 
Culture (IC) as ∞→n .  To describe this earlier work, let BDA denote the event that 
candidate B will dominate candidate A by defeating it for every possible WSR with 

10 ≤≤ λ .  Similarly, let { }XBD  denote the event that B dominates each candidate in a set 
X.  A study by Merlin et al (2002) uses geometric techniques to obtain a representation 
that can lead to the conditional probability, { }( )PMRWisA|IC,,C,ABP   ∞D ,  that candidate B 
will be the overall winner for every WSR with 10 ≤≤ λ , given that A is the PMRW as 

∞→n  with the assumption of IC.  This situation is obviously more restrictive than our 
definition of Condorcet’s Other Paradox. 
     We start by replicating the basic results from Merlin et al (2002) by using another 
(standard) approach to the problem, based on the Central Limit Theorem, to obtain a 
representation for the probability { }( )IC,,PMRWisA&C,ABP ∞   D  that candidate B dominates 
both A and C when A is the PMRW.  We know from Saari (1992) that, if candidate B is 
the overall winner by both PR and NPR, then B dominates both A and C. Consequently, 
there are six events that must occur simultaneously in a voting situation for having B 
dominating both A and C when A is the PMRW: 
 
   AMC   [ ]654321 nnnnnn ++>++   (1) 
   AMB   [ ]653421 nnnnnn ++>++   (2) 
   ( ) ( )00 ,AScore,BScore >  [ ]2153 nnnn +>+    (3) 
   ( ) ( )00 ,CScore,BScore >  [ ]6453 nnnn +>+    (4)  
   ( ) ( )11 ,AScore,BScore >  [ ]4265 nnnn +>+    (5) 
   ( ) ( )11 ,CScore,BScore >  [ ]4231 nnnn +>+    (6) 
  
     Discrete variables, j

tX  for 6,5,4,3,2,1=t , are defined for the event that each of these six 

restrictions will be observed in a randomly selected linear preference ranking for the thj  
voter.  Let ip  denote the probability that a randomly selected voter from the population 
of voters will have the corresponding linear preference ranking (see Fig. 1.1). The six 
discrete variables are defined in terms of the ip  probabilities for preference rankings in 
the following way: 
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     Given that IC implies1p = 2p = 3p = 4p = 5p = 6p =1/6, the correlation matrix that results 

from these definitions is 1R , with 
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Then { }( )ICPMRWisACABP ,,  & , ∞D  is equivalent to the multivariate normal positive 

orthant probability ( )1
6 RΦ .  And the symmetry of IC with respect to candidates requires 

that the probability that the same candidate, that is not the PMRW, will dominate the two 
other candidates, including the PMRW, is obtained as ( )1

66 RΦ .  Merlin et al (2002) 
obtain a very complex representation for this probability and use quadrature to obtain a 
value of .01808.  By using the procedure of Naylor et al (1966) to obtain Monte Carlo 
simulation estimates of ( )1

6 RΦ , we obtain a similar probability value.  To make this 
probability conditional on the fact that a PMRW exists, we simply make a modification 
and use the relationship ( ) ( )ICPPMRW ,,3/6 1

6 ∞Φ R , where ( )ICPPMRW ,,3 ∞  denotes the 

probability that a PMRW exists. As it is well known that ( )ICPPMRW ,,3 ∞ =.9123 (see e.g. 
Gehrlein, 2006), we obtain a probability value of .01982. 
     All of this indicates that the probability of observing this phenomenon is quite small.  
This result, however, could be biased on two accounts.  

∙ First, it could be the result of the IC assumption.  The impact of this assumption can be 
tested by doing the same analysis with the assumption of IAC. Under IAC, the desired 
probability can be obtained by dividing the number of voting situations described by Eqs. 
1 to 6 (multiplied by two, to take into account the fact that C can be the overall winner for 
every WSR instead of B) by the number of voting situations such that A is the PMRW. 
An algorithm based on Ehrhart polynomial theory was used to compute these numbers 
with IAC as a function of n, following a procedure developed in Lepelley et al (2008). 
We obtain that, with the assumption of IAC, the probability of having B or C the overall 
winner for every WSR given that A is the PMRW is given as: 

22

23

)4()2(3240

)86446842938)(12(

++
+−−−

nn

nnnnn  
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 for n=24, 48, 72, 96... The resulting conditional probability as ∞→n  is then reduced to 
38/3240= 19/1620 = .01173, so the small increase in voter dependence that is suggested 
by IAC (see e.g. Berg and Lepelley, 1994) makes the already small IC probability 
significantly smaller. 

∙ Second, if Condorcet’s Other Paradox, as we have defined it, is to be perceived as a real 
potential threat to elections, then the restrictions that we have just considered might be 
creating a significant understatement of the paradox. 
 
 

3. A More Relaxed Condition 
 
 The restrictions that are used by Merlin et al (2002) can be relaxed by just 
considering the possibility that some other given candidate always dominates the PMRW, 
but where this given candidate does not necessarily dominate the remaining candidate 
that is not the PMRW.  This would be obtained for one particular such occurrence with 
the probability ( )ICPMRWisAABP ,,  & ∞D  in which candidate B dominates the PMRW 
candidate A.   The representation for this probability will follow directly from the 
discussion above, since the conditions that lead to its occurrence in a voting situation 
follow from the restrictions in Eqs. 1 through 6 above, with the conditions of Eqs. 4 and 6 
being removed.  It follows directly that we can obtain a representation for 

( )IC,,PMRWisA&ABP ∞  D  as a multivariate normal positive orthant probability, ( )2
4 RΦ  

,with a correlation matrix 2R  that is obtained from 1R  by removing the terms that are 

associated with variables jX4  and jX6 , with 
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The form of 2R  does not lead to a simple representation for ( )2

4 RΦ , so we use a 

procedure from Gehrlein (1979) to evaluate it by quadrature, with ( ) 0032342
4 .≈Φ R .  It is 

not possible to have a voting situation in which both B and C dominate A when A is the 
PMRW, since this would require the PMRW to be ranked last by BR, which is 
impossible.  The symmetry of IC with respect to candidates therefore leads to the 
conclusion that the conditional probability that some given candidate dominates the 
PMRW, given that a PMRW exists is given by ( ) ( )ICPPMRW ,,3/6 2

4 ∞Φ R .  This value is 
given by .02127. 
 The use of this less restrictive condition does not result in a significant increase in 
the conditional probability of observing the outcome that is described by Merlin et al 
(2002).  When the probability of having BDA, given that A is PMRW, is calculated for 
IAC as a function of n, we obtain (using the same approach as above): 
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22

23

)4()2(80

)3522417)(8(

++
++−−

nn

nnnn  

for n=8, 16, 24, 32…  Thus, as ∞→n , the resulting probability is 1/80 = .0125.  Again, 
the slight degree of dependence that is suggested by IAC significantly decreases the 
already small probability that is obtained with the assumption of IC. 
 
 

4. Another Relaxation Condition  
 
 We can obtain a representation for the probability that Condorcet’s Other Paradox 
is observed by considering another relaxation of the conditions that were given by Merlin 
et al (2002).   Suppose that candidate A is the PMRW and that it is not dominated by 
either B or C, but A is still never selected as the WSR for any 10 ≤≤ λ .  Such an outcome 
can occur in a voting situation in which 
 
 AMC    [ ]654321 nnnnnn ++>++    (7) 
 AMB    [ ]653421 nnnnnn ++>++    (8) 
 ( ) ( )00 ,AScore,BScore >   [ ]2153 nnnn +>+     (9) 
 ( ) ( )00 ,CScore,AScore >   [ ]6421 nnnn +>+     (10) 
 ( ) ( )11 ,AScore,CScore >   [ ]3165 nnnn +>+     (11) 
 ( ) ( )11 ,BScore,AScore >   [ ]6542 nnnn +>+     (12) 
 ( ) ( )*,*, λλ AScoreCScore >  ( ) ( )[ ]43215264 ** nnnnnnnn +++>+++ λλ  (13) 
 
Candidate C does not dominate A because A beats C under PR due to the restriction in 
Eq. 10.  Similarly, candidate B does not dominate A since A beats B under NPR in Eq. 12.  
It follows directly from the linearity of ( )λ,XScore  as λ increases for each { }C,B,AX ∈ , that 
A must always be beaten by either B or C if it is also true that a value of *λ  exists for 
some 10 << *λ  with ( ) ( )*,BScore*,CScore λλ =  and in addition we have 

( ) ( )*,AScore*,CScore λλ > . 
 In order to have ( ) ( )*,BScore*,CScore λλ = , we need  

( ) ( )61535264 nn*nnnn*nn +++=+++ λλ , 
so that      

6152

6453

nnnn

nnnn
*

−−+
−−+

=λ . 

 For ( ) ( )*,AScore*,CScore λλ > , 
( ) ( )43215264 nn*nnnn*nn +++>+++ λλ , 

so that 

 ( ) ( )43
6152

6453
2152

6152

6453
64 nn

nnnn

nnnn
nnnn

nnnn

nnnn
nn +

−−+
−−+

++>+
−−+
−−+

++ .  (14) 

 
 If we sum Eqs. 9 through 12, and reduce the results, we obtain 
    6152 nnnn +>+ . 
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So, the result that is given above to require ( ) ( )*,AScore*,CScore λλ >  in Eq. 14 becomes 
( )( ) ( )( )

( )( ) ( )( ).nnnnnnnnnnnn

nnnnnnnnnnnn

436453615221

526453615264

              +−−++−−++
>+−−++−−++

 

 

This can be reduced to make the restriction in Eq. (14) equivalent to 
  545141

2
6

2
3

2
2636232

2
5

2
4

2
1 nnnnnnnnnnnnnnnnnn +++++>+++++ . (15) 

 
The nonlinear nature of the restriction in Eq. 15 makes it very difficult to obtain an 
estimate of this probability with the assumption of IC.  However, Monte-Carlo simulation 
was used to obtain an estimate of this probability with the assumption of IAC as ∞→n , 
following a procedure developed in Tovey (1997).  The conditional probability that a 
profile exists for which the PMRW is not dominated by either of the other candidate, and 
still is never selected as the winner for any WSR, given that a PMRW exists, is 
approximated as .00017.  This is an extremely small probability.  Adding this to the IAC 
probability from the previous section, we obtain the probability that Condorcet’s Other 
Paradox, as we have defined it, will be observed. The resulting probability for IAC as 

∞→n  is only .01267, to indicate that actual observances of Condorcet’s Other Paradox 
should be rare events. If we couple this observation with the knowledge of the fact that 
IC and IAC are expected to give inflated estimates of the probability that voting 
paradoxes will be observed, it can be concluded that actual observances of Condorcet’s 
Other Paradox should be very rare events. 
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