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Abstract 

We study the performance of several short-term trend estimators for current economic analysis. These estimators are 
available in X11-ARIMA, X12-ARIMA, TRAMO-SEATS and STAMP. We also include two other trend-cycle 
estimators obtained by post-processing seasonally adjusted data with X11ARIMA, namely, a modified Henderson 
nonlinear filter by Dagum (1996) DMH, and a new modified version of it, DMH-D. The estimators are applied to a 
number of simulated non-seasonal data of various levels of variability.
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1. Introduction

Major financial and economic changes of global nature have introduced high
levels of variability in time series data, particularly, in socioeconomic indicators
often used for the analysis of current economic conditions, known to as recession
and recovery analysis. Traditionally, these indicators were seasonally adjusted
to determine the direction of the short-term trend for an early detection of a
turning point. However, due to the presence of high levels of variability, there is
a need for further smoothing seasonally adjusted data to facilitate the analysis
of current economic conditions.

Dagum (1996) developed a nonparametric nonlinear filter to improve on the
classical Henderson linear filters, which are used in the X11-ARIMA and X12-
ARIMA methods for short-term trend-cycle estimation. Dagum’s modified 13-
term Henderson [DMH] nonlinear filter has the advantage of reducing the number
of unwanted ripples (10-month cycles that can be falsely interpreted as true turn-
ing points) in the final trend curve without increasing the time lag to detect a
true turning point. Furthermore, it also reduces the size of the revisions to the
most recent trend-cycle estimates with respect to those of the Henderson filter. A
study by Chaab et al. (1999) showed the superior performance of DMH relative
to structural trend-cycle parametric models when applied to seasonally adjusted
series with varying degrees of signal to noise ratios1.

The purpose of this paper is twofold: first, we propose a modification to the
Dagum (1996) nonlinear nonparametric filter, called here DMH-D, to improve on
the size of the revisions to the last data point trend-cycle estimate; and, second,
we perform a comparative analysis of the new estimator with that of Dagum
(1996) and others incorporated in seasonal adjustment methods, namely, X11-
ARIMA, X12-ARIMA, TRAMO-SEATS and STAMP. Differently to previous
studies, the comparison is done on the basis of non-seasonal simulated data.
Furthermore, the performance of the trend-cycle estimators discussed is evaluated
on the basis of four instead of the three main criteria: (1) time delay of true
turning point detection, (2) number of unwanted ripples (false turning points)
produced, and (3) size of revisions to the last data point trend-cycle estimate.
We added an extra criterion, that of the identification of true turning points for
we observed that the parametric trend estimators not always detected a true
turning point.

Section 2 briefly introduces the nonparametric short-term trend estimation
procedures. Section 3 gives the criteria required for a short-term trend to be
appropriate for current economic analyses. Section 4 shows the different data
sets used for the comparative analysis. Section 5 presents the empirical results

1Similarly, Dagum and Capitano (1998) and Dagum and Luati (2000) showed that DMH
gave superior results when compared to other non-parametric linear and non linear smoothers,
namely the local weighted regression (loess) of degree two, Gaussian kernel, supersmoother and
cubic spline.

1



and, finally, Section 6 concludes.

2. Trend-cycle Estimators

2.1. Henderson Trend-cycle Estimator

The trend-cycle Henderson estimator is a linear filter available in the Census X-11
seasonal adjustment method (Shiskin et al., 1967) and all its variants, particu-
larly, the X11-ARIMA (Dagum, 1988) and X12-ARIMA (Findley et al., 1998)
used in our study.
Henderson (1916) showed that the smoothness of the output from a given linear
filter depends on the smoothness of its weight diagram, and he developed a for-
mula which makes the sum of squares of the third differences of the smoothed
series a minimum for any numbers of terms. In others words, the

∑
(∆3yt)

2 is
minimized, where ∆ is the difference operator and yt is the output or smoothed
series, if and only if

∑
(∆3hk)

2 is minimizes, where hk’ are the weights, subject
to the constraints that

∑
hk = 1,

∑
khk = 0 and

∑
k2hk = 0 (Dagum, 1978 and

1985).
The Henderson symmetric weight system of length 2n + 1, where m = n + 2,

is given by

hk =
315[(m− 1)2 − k2][m2 − k2][(m + 1)2 − k2][3m2 − 16− 11k2]

8m(m2 − 1)(4m2 − 1)(4m2 − 9)(4m2 − 25)
(1)

To derive a set of 13 weights from (1), 8 is substituted for m and the values are
obtained for each k from −6 to 6. The Henderson 9-term and 23-term trend-cycle
filters are obtained by substituting m with 6 and 13, respectively. The Henderson
13-term trend-cycle [H13] filter is thus given by,

H13(B) = −0.019B−6 − 0.028B−5 + 0.00B−4 + 0.065B−3 + 0.147B−2

+0.214B−1 + 0.24B−0 + 0.214B1 + 0.147B2 + 0.065B3

+0.00B4 − 0.028B5 − 0.019B6 (2)

where B is the backshift operator defined by Bmyt = yt−m and B0 = 12.
The standard Henderson trend estimation consists of applying the automati-

cally selected Henderson filter to a robust seasonally adjusted series. The robus-
tification is done by the default replacement of extreme values where irregulars
falling between ±1.5σ and ±2.5σ are scaled down linearly and beyond ±1.5σ are
replaced by their mean. The seasonally adjusted series is usually obtained from

2For a discussion on the asymmetric Henderson filters for the observations at the beginning
and the end of the series, see Musgrave (1964), Ladiray and Quenneville (2001), Doherty (2001),
Gray and Thomson (2002) and Quenneville et al. (2003).
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the X11-ARIMA or the X12-ARIMA extending the original data with one year
of ARIMA extrapolations.

2.2. Dagum’s Modified 13-term Henderson Filter (DMH)

The modified 13-term Henderson filter developed by Dagum (1996) is nonlinear
and basically, consists of: (a) extending the series (which is already seasonally
adjusted if seasonality is present as often occurs with monthly or quarterly eco-
nomic data) using ARIMA extrapolated values and (b) applying the 13-term
Henderson filter to the extended series with modified extreme values identified
using very strict sigma limits.

To facilitate the identification and fitting of simple ARIMA models, Dagum
(1996) recommends, at step (a), to modify the input series for the presence of
extreme values using the standard ±2.5σ limits of X11ARIMA (versions 1988 or
2000) and X12ARIMA (Findley et al. 1998). These computer programs are those
that can be used to implement DMH. In this way, a simple and very parsimonious
ARIMA model, the (0, 1, 1) (0, 0, 1)s, is often found to fit a large number of series.
Concerning step (b), it is recommended to use very strict sigma limits, such as
±0.7σ and ±1.0σ.

The extension of the series is performed with the purpose of reducing the
size of the revisions of the most recent estimates. On the other hand, the use of
stricter sigma limits for the identification and replacement of the extreme values
has the purpose of reducing the number of unwanted ripples (false turning points)
created by the classical 13-term Henderson filter.

To extrapolate the input series, Dagum (1996) advises to employ the (0, 1, 1)
(0, 0, 1) ARIMA model. However, we observed from many empirical studies that
the value of seasonal moving average parameter was often very small. Therefore,
we propose to modify this method [thereafter DMH-D] by removing this param-
eter and using the (0, 1, 1) (0, 0, 0) ARIMA model, this model change improves
the revision size without altering the delay of turning point detection and the
number of unwanted ripples3.

3. Criteria of Comparison for Current Economic Analysis

The performance of the above trend-cycle estimators is evaluated on the basis of
four major criteria for current economic analysis: (1) the identification of true
turning point, (2) time delay, (3) number of false turning points produced, and
(4) the size of revisions to the last data point (concurrent) trend-cycle estimate
as new data are added. The method to be preferred is the one that gives the
smallest values for each of these four criteria. If no method ranks first in all

3See Chhab et al. (1999) for a discussion
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four criteria, the order of preference is given as follows: First, the number of true
turning points identified and their time delay, second, the number of false turning
points introduced by each method, and third the size of the revisions.
Relative to the criteria considered in Dagum (1996) we added, here, the iden-
tification of true turning points, since not always the model-based trend-cycle
estimators identified a true turning point. In this study, a true turning point is
considered missed if never identified or detected with more than 6 months delay.

We follow the definition of a turning point in the context of smoothed data
largely accepted in the literature (Zellner et al., 1991) according to which a down-
turn occurs at time t if: yt−k ≤ · · · ≤ yt−1 > yt ≥ yt+1 ≥ · · · ≥ yt+m; and a upturn
if yt−k ≥ · · · ≥ yt−1 < yt ≤ yt+1 ≤ · · · ≤ yt+m with k = 3 and m = 1.

An unwanted ripples arises whenever two (false) turning points occur within a
10 months period implying short cycles of 10 month periodicity. We also consider
turning points generated by shorter cycles from 3 to 7 month periodicity. These
latter are seldom confuse as false turning points but produce a more variable
trend from which it becomes difficult to assert its direction in the short-term.
The time lag to detect a true turning points is obtained by calculating the number
of months it takes for the revised trend series to signal a turning point in the same
position as in the final trend series.
The size of total revision of the concurrent trend estimate is calculated by means
of the mean absolute percentage error (MAPE) over four complete years, defined
by

MAPE =
1

48

48∑
t=1

∣∣∣∣∣
ŷ

(F )
t − ŷ

(0)
t

ŷ
(0)
t

∣∣∣∣∣ (3)

where ŷ
(0)
t is the last estimate of the trend when the series is truncated in t and

then adding one point at a time till t + 48. The ŷ
(F )
t denotes the corresponding

final estimate, i.e. the one obtained for each point from the full span of the series.
We also compute criteria (1) and (2) in probability terms, with α the prob-

ability of identifying a true turning point and γi the probability of identifying a
true turning point with up to i month delays (Chhab et al., 1999).

4. Data sets

The trend-cycle estimators are applied to a number of non-seasonal simulated
data with different levels of variability. The simulated non-seasonal series are
composed of trend, cycle and irregulars, ranging from January 1948 till December
2000. We chose two levels of signal to noise ratio, one low and one high, to
generate series of high and low variability, respectively. The trend component
is assumed to be a random walk model without drift: Tt = Tt−1 + νt with νt ∼
N(0, σ2

ν). The cyclical component is modelled by: Ct = ρ[cos(2πt/λ)+sin(2πt/λ)]
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where ρ is a damping factor (0 < ρ < 1) and λ is the cycle frequency. The
irregulars are assumed to be white noise with mean zero and variance σ2

e : It = et

with et ∼ N(0, σ2
e).

For the simulations we vary the σ2
ν , σ2

e , ρ and λ parameters. For the series
with a low signal to noise ratio (high variability), σ2

ν = 0.08, σ2
e = 0.40, λ = 60

and ρ = 0.50, 0.7, 0.80. For the series with a high signal to noise ratio (low
variability), σ2

ν = 0.08, σ2
e = 0.20, λ = 60 and ρ = 3.0, 3.5, 4.04.

5. Empirical results

We perform a comparative analysis of the new trend-cycle estimator with that
of Dagum (1996) and the estimators available in X11/X12-ARIMA with the H13
filter, TRAMO-SEATS with the ARIMA model-based (nonlinear) parametric
trend-cycle estimator (Gómez and Maravall, 1997), and STAMP with the struc-
tural trend-cycle parametric estimator (Koopman et al., 1995)5. The comparison
is done on the basis of six non-seasonal simulated data and from the four major
criteria for current economic analysis.

5.1. Identification of true turning points and time delay

The ARIMA model-based and the structural trend-cycle predictors not always
detected a true turning point present in the series analyzed. There are 17 true
turning points in each simulated series6. As shown in Table 1, the nonparametric
trend-cycle predictors, X11/X12-ARIMA (H13), DMH and DMH-D identified all
of them correctly (α = 100%) whatever the level of variability. On the contrary,
the ARIMA trend-cycle parametric estimator from TRAMO-SEATS, and that
from STAMP, performed very poorly in both number of true turning point iden-
tified and associated probabilities. This is particularly so for series with a high
signal to noise ratio where the short-term trends estimated by both parametric
procedures follow closely the input data and do not smooth, thus, leaving most
of the noise.

Table 2 displays the time delays for the simulated non-seasonal series. It is ap-
parent that, independently of the data variability, the nonparametric estimators
identify the true turning points more quickly than the parametric ones. For se-
ries of high variability, STAMP and TRAMO-SEATS identify the turning points
with a time lag of three and four months, respectively. No average is shown for

4The level of variability has been verified from the irregular-trend-cycle ratio (I/C) available
in the Census X-11 seasonal adjustment method and all its variants.

5More precisely, we apply the basic structural model [BSM] developed by Harvey (1981).
6There are 21 turning points from the generated series, however, only 17 are identifiable due

to losing some of them with some of the trend-cycle methods.

5



Table 1: Number of true turning points identified.

H13 DMH DMH-D STAMP TS
low I/C 17

(1.00)
17

(1.00)
17

(1.00)
14

(0.82)
11

(0.65)

high I/C 17
(1.00)

17
(1.00)

17
(1.00)

4
(0.23)

8.3
(0.49)

H13: X11/X12-ARIMA (H13); DMH: Dagum’s modified 13-term Henderson; DMH-D: modified DMH; TS:
TRAMO-SEATS. The α probabilities are given in brackets.

those of small variability because both procedure missed a large number of true
turning points. The average true turning point delay for DMH and DMH-D is
less than two months for the series with a high signal to noise ratio, and of two
and a half months for those of with a low signal to noise ratio. In all cases they
show an improvement respect to H13 as applied in X11/X12-ARIMA.

Table 2: Average time delay of true turning point detection (in month).

H13 DMH DMH-D STAMP TS
low I/C 2.59 2.49 2.45 4.01 3.02
γ1 0.06 0.20 0.22 0.02 0.06
γ2 0.51 0.45 0.47 0.14 0.31
γ3 0.90 0.84 0.82 0.27 0.47
γ4 0.96 0.94 0.96 0.51 0.51
high I/C 2.41 1.92 1.90 - -
γ1 0.06 0.29 0.29 0.24 0.39
γ2 0.61 0.75 0.77 0.25 0.43
γ3 0.92 0.96 0.96 0.25 0.45
γ4 1.00 1.00 1.00 0.25 0.45

H13: X11/X12-ARIMA (H13); DMH: Dagum’s modified 13-term Henderson; DMH-D: modified DMH; TS:
TRAMO-SEATS. γi denotes the probability of identification with i month delay.

Table 2 gives also the probability γi of true turning point detection with a
time lag ranging from one to four months, respectively. For the series with a low
I/C, the probability γ1 of detecting a true turning point, within one month, with
DMH and DMH-D is around 0.20 whereas for the remainder estimators is much
lower. For series with high I/C, all the estimators, except H13 and TRAMO-
SEATS, can detect a true turning point with a probability ranging from 0.24
to 0.29. The nonparametric estimators based on the 13-term Henderson filter
identify true turning points, within two months, with a probability γ2 close to
0.50 if I/C is low and 0.70 when I/C is high. The parametric estimators from

6



TRAMO-SEATS and STAMP only identify 0.14 and 0.31 of all possible turning
points, respectively when the variability is high and 0.25 and 0.43 when it is
low. The probability γ4 of detecting a turning point with a maximum time lag
of four months, for highly variable data, reaches around 0.95 for H13, DMH and
DMH-D, while this probability is of 0.50 for the both parametric estimators. For
series of low variability the latter have even a lower probability of true turning
point identification whereas the non parametric methods reach 1. In general, the
probability of detecting a true turning point with a nonparametric trend-cycle
predictor increases with the time delay but this is not so for the parametric pre-
dictors.

5.2. Number of unwanted ripples

The presence of false turning points resulting from 10-month cycles (unwanted
ripples) seems to be more a problem of the non parametric than the parametric
methods, due to the use of the H13 filter. On the other hand, the parametric
method filters tend to under- or over-smooth, producing then a large number of
turning points from short cyclical variations (3-7 month periodicity) or very few
turning points (whether true or false).

Table 3 displays the number of turning points from short cycles and indicates
that the parametric methods either oversmooth or undersmooth. The largest
number of very short cyclical fluctuations is given by TRAMO-SEATS indepen-
dently of the signal to noise ratio. On the contrary, STAMP oversmooth series
of high variability (I/C low) and produces a large number of turning points from
short cycles when I/C is high.

Table 3: Number of turning points from short cycles.

H13 DMH DMH-D STAMP TS
low I/C 20 12 12 8 28
high I/C 14 8 8 16 27

H13: X11/X12-ARIMA (H13); DMH: Dagum’s modified 13-term Henderson; DMH-D: modified DMH; TS:
TRAMO-SEATS.

5.3. Revisions of Concurrent Trend-Cycle Estimates

Table 4 displays the revisions calculated over four full years, from January 1983
till December 1986. For the series with a low signal to noise ratio (high variabil-
ity), the smaller average revision is given by TRAMO-SEATS (0.98) followed by
DMH and DMH-D that give an average revision of 1.06. The largest revision is
given by STAMP. For the series with a high signal to noise ratio (low variability),
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the revisions produced by STAMP are extremely low relative to the other methods
(similarly by TRAMO-SEATS for two series). In fact, this is to be expected for
the trend curves of the concurrent estimates from STAMP and TRAMO-SEATS
are almost superimposed with their historical (final) estimates. Consequently,
for these parametric methods, the difference between their concurrent and his-
torical trend-cycle estimates is very small (sometimes null). The trend estimates
are practically not smoothed with a large number of short-cyclical fluctuations
present. In fact, we cannot dissociate the problem of revisions with the type of
final trend produced by a given method. In our study, when the series are of low
variability (high I/C) both STAMP and TRAMO-SEATS produce very distinct
final trends to those from the non parametric methods.

Table 4: Concurrent trend-cycle revisions (MAPE).

H13 DMH DMH-D STAMP TS
low I/C 1.12 1.06 1.06 1.19 0.98
high I/C 1.17 1.23 1.21 - 0.66

H13: X11/X12-ARIMA (H13); DMH: Dagum’s modified 13-term Henderson; DMH-D: modified DMH; TS:
TRAMO-SEATS.

6. Conclusion

We performed a comparative analysis of trend-cycle estimators available in sea-
sonal adjustment methods, namely, X11/X12-ARIMA, TRAMO-SEATS and STAMP,
and other two obtained by post-processing seasonally adjusted data. These lat-
ter are the Dagum modified Henderson filter (DMH), and a new modified version
(DMH-D) developed to improve on the size of the revisions to most recent trend-
cycle estimates.
The performances of the trend-cycle estimators were evaluated on the basis of
four major criteria for current economic analysis. These criteria were evaluated
on the basis of six simulated non-seasonal data of varying degrees of variability.
The results showed that the proposed modification to the Dagum filter produced
smaller revisions while maintaining DMH good properties of true turning point
detection, short-time delay and small number of unwanted ripples. The revision
gains introduced by DMH-D were more significant when the revisions were large
in magnitude. Moreover, the non-parametric trend-cycle predictors performed
systematically better than the parametric ones available in TRAMO-SEATS and
STAMP. Further research should investigate the performance of the DMH and
DMH-D with others trend-cycle estimators and from a larger simulation including
others types of models with varying degree of variability to confirm our prelimi-
nary results.
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